Solve for f (complex solution)
\left\{\begin{matrix}f=\frac{R\left(x+2\right)}{1-xR^{2}}\text{, }&\left(R\neq -x^{-\frac{1}{2}}\text{ and }R\neq x^{-\frac{1}{2}}\text{ and }R\neq 0\right)\text{ or }\left(x=0\text{ and }R\neq 0\right)\\f\in \mathrm{C}\text{, }&\left(R=\frac{\sqrt{2}i}{2}\text{ or }R=-\frac{\sqrt{2}i}{2}\right)\text{ and }x=-2\end{matrix}\right.
Solve for f
f=\frac{R\left(x+2\right)}{1-xR^{2}}
\left(|R|\neq \frac{1}{\sqrt{x}}\text{ or }x\leq 0\right)\text{ and }R\neq 0
Solve for R (complex solution)
\left\{\begin{matrix}R=-\frac{\sqrt{x^{2}+4xf^{2}+4x+4}+x+2}{2fx}\text{; }R=-\frac{-\sqrt{x^{2}+4xf^{2}+4x+4}+x+2}{2fx}\text{, }&x\neq 0\text{ and }f\neq 0\\R=\frac{f}{2}\text{, }&x=0\text{ and }f\neq 0\\R\neq 0\text{, }&f=0\text{ and }x=-2\end{matrix}\right.
Solve for R
\left\{\begin{matrix}R=-\frac{\sqrt{x^{2}+4xf^{2}+4x+4}+x+2}{2fx}\text{; }R=-\frac{-\sqrt{x^{2}+4xf^{2}+4x+4}+x+2}{2fx}\text{, }&f\neq 0\text{ and }x\neq 0\text{ and }\left(|f|\leq \frac{\sqrt{-\frac{\left(x+2\right)^{2}}{x}}}{2}\text{ or }x>0\right)\\R=\frac{f}{2}\text{, }&x=0\text{ and }f\neq 0\\R\neq 0\text{, }&f=0\text{ and }x=-2\end{matrix}\right.
Graph
Share
Copied to clipboard
f-RfxR=Rx+R\times 2
Multiply both sides of the equation by R.
f-R^{2}fx=Rx+R\times 2
Multiply R and R to get R^{2}.
-fxR^{2}+f=Rx+2R
Reorder the terms.
\left(-xR^{2}+1\right)f=Rx+2R
Combine all terms containing f.
\left(1-xR^{2}\right)f=Rx+2R
The equation is in standard form.
\frac{\left(1-xR^{2}\right)f}{1-xR^{2}}=\frac{R\left(x+2\right)}{1-xR^{2}}
Divide both sides by -xR^{2}+1.
f=\frac{R\left(x+2\right)}{1-xR^{2}}
Dividing by -xR^{2}+1 undoes the multiplication by -xR^{2}+1.
f-RfxR=Rx+R\times 2
Multiply both sides of the equation by R.
f-R^{2}fx=Rx+R\times 2
Multiply R and R to get R^{2}.
-fxR^{2}+f=Rx+2R
Reorder the terms.
\left(-xR^{2}+1\right)f=Rx+2R
Combine all terms containing f.
\left(1-xR^{2}\right)f=Rx+2R
The equation is in standard form.
\frac{\left(1-xR^{2}\right)f}{1-xR^{2}}=\frac{R\left(x+2\right)}{1-xR^{2}}
Divide both sides by -xR^{2}+1.
f=\frac{R\left(x+2\right)}{1-xR^{2}}
Dividing by -xR^{2}+1 undoes the multiplication by -xR^{2}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}