Solve for m
m=\frac{5+i\sqrt{\frac{96}{e}-25}}{12}\approx 0.416666667+0.267659952i
m=\frac{-i\sqrt{\frac{96}{e}-25}+5}{12}\approx 0.416666667-0.267659952i
Share
Copied to clipboard
6em^{2}-5em+4=0\times 0
Use the distributive property to multiply em by 6m-5.
6em^{2}-5em+4=0
Multiply 0 and 0 to get 0.
6em^{2}+\left(-5e\right)m+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-5e\right)±\sqrt{\left(-5e\right)^{2}-4\times 6e\times 4}}{2\times 6e}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6e for a, -5e for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-5e\right)±\sqrt{25e^{2}-4\times 6e\times 4}}{2\times 6e}
Square -5e.
m=\frac{-\left(-5e\right)±\sqrt{25e^{2}+\left(-24e\right)\times 4}}{2\times 6e}
Multiply -4 times 6e.
m=\frac{-\left(-5e\right)±\sqrt{25e^{2}-96e}}{2\times 6e}
Multiply -24e times 4.
m=\frac{-\left(-5e\right)±\sqrt{e\left(25e-96\right)}}{2\times 6e}
Add 25e^{2} to -96e.
m=\frac{-\left(-5e\right)±i\sqrt{e\left(96-25e\right)}}{2\times 6e}
Take the square root of e\left(25e-96\right).
m=\frac{5e±i\sqrt{e\left(96-25e\right)}}{2\times 6e}
The opposite of -5e is 5e.
m=\frac{5e±i\sqrt{e\left(96-25e\right)}}{12e}
Multiply 2 times 6e.
m=\frac{5e+i\sqrt{e\left(96-25e\right)}}{12e}
Now solve the equation m=\frac{5e±i\sqrt{e\left(96-25e\right)}}{12e} when ± is plus. Add 5e to i\sqrt{e\left(-25e+96\right)}.
m=\frac{i\sqrt{96-25e}}{12\sqrt{e}}+\frac{5}{12}
Divide 5e+i\sqrt{e\left(-25e+96\right)} by 12e.
m=\frac{-i\sqrt{e\left(96-25e\right)}+5e}{12e}
Now solve the equation m=\frac{5e±i\sqrt{e\left(96-25e\right)}}{12e} when ± is minus. Subtract i\sqrt{e\left(-25e+96\right)} from 5e.
m=-\frac{i\sqrt{96-25e}}{12\sqrt{e}}+\frac{5}{12}
Divide 5e-i\sqrt{e\left(-25e+96\right)} by 12e.
m=\frac{i\sqrt{96-25e}}{12\sqrt{e}}+\frac{5}{12} m=-\frac{i\sqrt{96-25e}}{12\sqrt{e}}+\frac{5}{12}
The equation is now solved.
6em^{2}-5em+4=0\times 0
Use the distributive property to multiply em by 6m-5.
6em^{2}-5em+4=0
Multiply 0 and 0 to get 0.
6em^{2}-5em=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
6em^{2}+\left(-5e\right)m=-4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{6em^{2}+\left(-5e\right)m}{6e}=-\frac{4}{6e}
Divide both sides by 6e.
m^{2}+\left(-\frac{5e}{6e}\right)m=-\frac{4}{6e}
Dividing by 6e undoes the multiplication by 6e.
m^{2}-\frac{5}{6}m=-\frac{4}{6e}
Divide -5e by 6e.
m^{2}-\frac{5}{6}m=-\frac{2}{3e}
Divide -4 by 6e.
m^{2}-\frac{5}{6}m+\left(-\frac{5}{12}\right)^{2}=-\frac{2}{3e}+\left(-\frac{5}{12}\right)^{2}
Divide -\frac{5}{6}, the coefficient of the x term, by 2 to get -\frac{5}{12}. Then add the square of -\frac{5}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-\frac{5}{6}m+\frac{25}{144}=-\frac{2}{3e}+\frac{25}{144}
Square -\frac{5}{12} by squaring both the numerator and the denominator of the fraction.
\left(m-\frac{5}{12}\right)^{2}=-\frac{2}{3e}+\frac{25}{144}
Factor m^{2}-\frac{5}{6}m+\frac{25}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{5}{12}\right)^{2}}=\sqrt{-\frac{2}{3e}+\frac{25}{144}}
Take the square root of both sides of the equation.
m-\frac{5}{12}=\frac{i\sqrt{96-25e}}{12\sqrt{e}} m-\frac{5}{12}=-\frac{i\sqrt{96-25e}}{12\sqrt{e}}
Simplify.
m=\frac{i\sqrt{96-25e}}{12\sqrt{e}}+\frac{5}{12} m=-\frac{i\sqrt{96-25e}}{12\sqrt{e}}+\frac{5}{12}
Add \frac{5}{12} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}