Skip to main content
Solve for d (complex solution)
Tick mark Image
Solve for d
Tick mark Image

Similar Problems from Web Search

Share

\left(e^{y}e^{x}+e^{y}\right)dy=e^{x}\left(1-e^{y}\right)dx
Use the distributive property to multiply e^{y} by e^{x}+1.
\left(e^{y}e^{x}d+e^{y}d\right)y=e^{x}\left(1-e^{y}\right)dx
Use the distributive property to multiply e^{y}e^{x}+e^{y} by d.
e^{y}e^{x}dy+e^{y}dy=e^{x}\left(1-e^{y}\right)dx
Use the distributive property to multiply e^{y}e^{x}d+e^{y}d by y.
e^{y}e^{x}dy+e^{y}dy-e^{x}\left(1-e^{y}\right)dx=0
Subtract e^{x}\left(1-e^{y}\right)dx from both sides.
e^{y}e^{x}dy+e^{y}dy+\left(-e^{x}+e^{y+x}\right)dx=0
Use the distributive property to multiply -e^{x} by 1-e^{y}.
e^{y}e^{x}dy+e^{y}dy+\left(-e^{x}d+e^{y+x}d\right)x=0
Use the distributive property to multiply -e^{x}+e^{y+x} by d.
e^{y}e^{x}dy+e^{y}dy-e^{x}dx+e^{y+x}dx=0
Use the distributive property to multiply -e^{x}d+e^{y+x}d by x.
\left(e^{y}e^{x}y+e^{y}y-e^{x}x+e^{y+x}x\right)d=0
Combine all terms containing d.
\left(xe^{x+y}-xe^{x}+ye^{x+y}+ye^{y}\right)d=0
The equation is in standard form.
d=0
Divide 0 by e^{y+x}y+e^{y}y-e^{x}x+e^{y+x}x.
\left(e^{y}e^{x}+e^{y}\right)dy=e^{x}\left(1-e^{y}\right)dx
Use the distributive property to multiply e^{y} by e^{x}+1.
\left(e^{y}e^{x}d+e^{y}d\right)y=e^{x}\left(1-e^{y}\right)dx
Use the distributive property to multiply e^{y}e^{x}+e^{y} by d.
e^{y}e^{x}dy+e^{y}dy=e^{x}\left(1-e^{y}\right)dx
Use the distributive property to multiply e^{y}e^{x}d+e^{y}d by y.
e^{y}e^{x}dy+e^{y}dy-e^{x}\left(1-e^{y}\right)dx=0
Subtract e^{x}\left(1-e^{y}\right)dx from both sides.
e^{y}e^{x}dy+e^{y}dy+\left(-e^{x}+e^{y+x}\right)dx=0
Use the distributive property to multiply -e^{x} by 1-e^{y}.
e^{y}e^{x}dy+e^{y}dy+\left(-e^{x}d+e^{y+x}d\right)x=0
Use the distributive property to multiply -e^{x}+e^{y+x} by d.
e^{y}e^{x}dy+e^{y}dy-e^{x}dx+e^{y+x}dx=0
Use the distributive property to multiply -e^{x}d+e^{y+x}d by x.
\left(e^{y}e^{x}y+e^{y}y-e^{x}x+e^{y+x}x\right)d=0
Combine all terms containing d.
\left(xe^{x+y}-xe^{x}+ye^{x+y}+ye^{y}\right)d=0
The equation is in standard form.
d=0
Divide 0 by e^{y+x}y+e^{y}y-e^{x}x+e^{y+x}x.