Solve for m (complex solution)
m=\frac{e}{c^{p}}
p=0\text{ or }c\neq 0
Solve for m
m=\frac{e}{c^{p}}
c>0\text{ or }\left(Denominator(p)\text{bmod}2=1\text{ and }c<0\right)
Solve for c (complex solution)
c=e^{-\frac{2\pi n_{1}iRe(p)}{\left(Re(p)\right)^{2}+\left(Im(p)\right)^{2}}-\frac{2\pi n_{1}Im(p)}{\left(Re(p)\right)^{2}+\left(Im(p)\right)^{2}}+\frac{Re(p)-iIm(p)+arg(\frac{1}{m})Im(p)+iarg(\frac{1}{m})Re(p)}{\left(Re(p)\right)^{2}+\left(Im(p)\right)^{2}}}\left(|m|\right)^{\frac{-Re(p)+iIm(p)}{\left(Re(p)\right)^{2}+\left(Im(p)\right)^{2}}}
n_{1}\in \mathrm{Z}
m\neq 0
Solve for c
\left\{\begin{matrix}c=\left(\frac{e}{m}\right)^{\frac{1}{p}}\text{, }&\left(Numerator(p)\text{bmod}2=1\text{ and }Denominator(p)\text{bmod}2=1\text{ and }\left(\frac{e}{m}\right)^{\frac{1}{p}}\neq 0\text{ and }m<0\right)\text{ or }\left(\left(\frac{e}{m}\right)^{\frac{1}{p}}>0\text{ and }p\neq 0\text{ and }m>0\right)\text{ or }\left(\left(\frac{e}{m}\right)^{\frac{1}{p}}<0\text{ and }p\neq 0\text{ and }Denominator(p)\text{bmod}2=1\text{ and }m>0\right)\\c=-\left(\frac{e}{m}\right)^{\frac{1}{p}}\text{, }&\left(m<0\text{ and }Numerator(p)\text{bmod}2=1\text{ and }Numerator(p)\text{bmod}2=0\text{ and }Denominator(p)\text{bmod}2=1\text{ and }\left(\frac{e}{m}\right)^{\frac{1}{p}}\neq 0\right)\text{ or }\left(m>0\text{ and }p\neq 0\text{ and }\left(\frac{e}{m}\right)^{\frac{1}{p}}<0\text{ and }Numerator(p)\text{bmod}2=0\right)\text{ or }\left(m>0\text{ and }p\neq 0\text{ and }\left(\frac{e}{m}\right)^{\frac{1}{p}}>0\text{ and }Numerator(p)\text{bmod}2=0\text{ and }Denominator(p)\text{bmod}2=1\right)\\c\neq 0\text{, }&m=e\text{ and }p=0\end{matrix}\right.
Share
Copied to clipboard
mc^{p}=e
Swap sides so that all variable terms are on the left hand side.
c^{p}m=e
The equation is in standard form.
\frac{c^{p}m}{c^{p}}=\frac{e}{c^{p}}
Divide both sides by c^{p}.
m=\frac{e}{c^{p}}
Dividing by c^{p} undoes the multiplication by c^{p}.
mc^{p}=e
Swap sides so that all variable terms are on the left hand side.
c^{p}m=e
The equation is in standard form.
\frac{c^{p}m}{c^{p}}=\frac{e}{c^{p}}
Divide both sides by c^{p}.
m=\frac{e}{c^{p}}
Dividing by c^{p} undoes the multiplication by c^{p}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}