Solve for a
a=\frac{\sqrt{2}c}{2e}
c\neq 0
Solve for c
c=e\sqrt{2}a
a\neq 0
Share
Copied to clipboard
e\times 2a=2c\times \frac{\sqrt{2}}{2}
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2a, the least common multiple of a,2.
e\times 2a=\frac{2\sqrt{2}}{2}c
Express 2\times \frac{\sqrt{2}}{2} as a single fraction.
e\times 2a=\sqrt{2}c
Cancel out 2 and 2.
2ea=\sqrt{2}c
The equation is in standard form.
\frac{2ea}{2e}=\frac{\sqrt{2}c}{2e}
Divide both sides by 2e.
a=\frac{\sqrt{2}c}{2e}
Dividing by 2e undoes the multiplication by 2e.
a=\frac{\sqrt{2}c}{2e}\text{, }a\neq 0
Variable a cannot be equal to 0.
e\times 2a=2c\times \frac{\sqrt{2}}{2}
Multiply both sides of the equation by 2a, the least common multiple of a,2.
e\times 2a=\frac{2\sqrt{2}}{2}c
Express 2\times \frac{\sqrt{2}}{2} as a single fraction.
e\times 2a=\sqrt{2}c
Cancel out 2 and 2.
\sqrt{2}c=e\times 2a
Swap sides so that all variable terms are on the left hand side.
\sqrt{2}c=2ea
The equation is in standard form.
\frac{\sqrt{2}c}{\sqrt{2}}=\frac{2ea}{\sqrt{2}}
Divide both sides by \sqrt{2}.
c=\frac{2ea}{\sqrt{2}}
Dividing by \sqrt{2} undoes the multiplication by \sqrt{2}.
c=e\sqrt{2}a
Divide 2ea by \sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}