Solve for D
D=5e-a
Solve for a
a=5e-D
Share
Copied to clipboard
e=\frac{1}{5}a+\frac{1}{5}D
Divide each term of a+D by 5 to get \frac{1}{5}a+\frac{1}{5}D.
\frac{1}{5}a+\frac{1}{5}D=e
Swap sides so that all variable terms are on the left hand side.
\frac{1}{5}D=e-\frac{1}{5}a
Subtract \frac{1}{5}a from both sides.
\frac{1}{5}D=-\frac{a}{5}+e
The equation is in standard form.
\frac{\frac{1}{5}D}{\frac{1}{5}}=\frac{-\frac{a}{5}+e}{\frac{1}{5}}
Multiply both sides by 5.
D=\frac{-\frac{a}{5}+e}{\frac{1}{5}}
Dividing by \frac{1}{5} undoes the multiplication by \frac{1}{5}.
D=5e-a
Divide e-\frac{a}{5} by \frac{1}{5} by multiplying e-\frac{a}{5} by the reciprocal of \frac{1}{5}.
e=\frac{1}{5}a+\frac{1}{5}D
Divide each term of a+D by 5 to get \frac{1}{5}a+\frac{1}{5}D.
\frac{1}{5}a+\frac{1}{5}D=e
Swap sides so that all variable terms are on the left hand side.
\frac{1}{5}a=e-\frac{1}{5}D
Subtract \frac{1}{5}D from both sides.
\frac{1}{5}a=-\frac{D}{5}+e
The equation is in standard form.
\frac{\frac{1}{5}a}{\frac{1}{5}}=\frac{-\frac{D}{5}+e}{\frac{1}{5}}
Multiply both sides by 5.
a=\frac{-\frac{D}{5}+e}{\frac{1}{5}}
Dividing by \frac{1}{5} undoes the multiplication by \frac{1}{5}.
a=5e-D
Divide e-\frac{D}{5} by \frac{1}{5} by multiplying e-\frac{D}{5} by the reciprocal of \frac{1}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}