d y - ( y - 1 ) ^ { 2 } d x = 0
Solve for d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&x=\frac{y}{\left(y-1\right)^{2}}\text{ and }y\neq 1\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{y}{\left(y-1\right)^{2}}\text{, }&y\neq 1\\x\in \mathrm{C}\text{, }&d=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&x=\frac{y}{\left(y-1\right)^{2}}\text{ and }y\neq 1\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{y}{\left(y-1\right)^{2}}\text{, }&y\neq 1\\x\in \mathrm{R}\text{, }&d=0\end{matrix}\right.
Graph
Share
Copied to clipboard
dy-\left(y^{2}-2y+1\right)dx=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-1\right)^{2}.
dy-\left(y^{2}d-2yd+d\right)x=0
Use the distributive property to multiply y^{2}-2y+1 by d.
dy-\left(y^{2}dx-2ydx+dx\right)=0
Use the distributive property to multiply y^{2}d-2yd+d by x.
dy-y^{2}dx+2ydx-dx=0
To find the opposite of y^{2}dx-2ydx+dx, find the opposite of each term.
\left(y-y^{2}x+2yx-x\right)d=0
Combine all terms containing d.
\left(y-x+2xy-xy^{2}\right)d=0
The equation is in standard form.
d=0
Divide 0 by y-y^{2}x+2yx-x.
dy-\left(y^{2}-2y+1\right)dx=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-1\right)^{2}.
dy-\left(y^{2}d-2yd+d\right)x=0
Use the distributive property to multiply y^{2}-2y+1 by d.
dy-\left(y^{2}dx-2ydx+dx\right)=0
Use the distributive property to multiply y^{2}d-2yd+d by x.
dy-y^{2}dx+2ydx-dx=0
To find the opposite of y^{2}dx-2ydx+dx, find the opposite of each term.
-y^{2}dx+2ydx-dx=-dy
Subtract dy from both sides. Anything subtracted from zero gives its negation.
-dxy^{2}+2dxy-dx=-dy
Reorder the terms.
\left(-dy^{2}+2dy-d\right)x=-dy
Combine all terms containing x.
\frac{\left(-dy^{2}+2dy-d\right)x}{-dy^{2}+2dy-d}=-\frac{dy}{-dy^{2}+2dy-d}
Divide both sides by -dy^{2}+2dy-d.
x=-\frac{dy}{-dy^{2}+2dy-d}
Dividing by -dy^{2}+2dy-d undoes the multiplication by -dy^{2}+2dy-d.
x=\frac{y}{\left(1-y\right)^{2}}
Divide -dy by -dy^{2}+2dy-d.
dy-\left(y^{2}-2y+1\right)dx=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-1\right)^{2}.
dy-\left(y^{2}d-2yd+d\right)x=0
Use the distributive property to multiply y^{2}-2y+1 by d.
dy-\left(y^{2}dx-2ydx+dx\right)=0
Use the distributive property to multiply y^{2}d-2yd+d by x.
dy-y^{2}dx+2ydx-dx=0
To find the opposite of y^{2}dx-2ydx+dx, find the opposite of each term.
\left(y-y^{2}x+2yx-x\right)d=0
Combine all terms containing d.
\left(y-x+2xy-xy^{2}\right)d=0
The equation is in standard form.
d=0
Divide 0 by y-y^{2}x+2yx-x.
dy-\left(y^{2}-2y+1\right)dx=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-1\right)^{2}.
dy-\left(y^{2}d-2yd+d\right)x=0
Use the distributive property to multiply y^{2}-2y+1 by d.
dy-\left(y^{2}dx-2ydx+dx\right)=0
Use the distributive property to multiply y^{2}d-2yd+d by x.
dy-y^{2}dx+2ydx-dx=0
To find the opposite of y^{2}dx-2ydx+dx, find the opposite of each term.
-y^{2}dx+2ydx-dx=-dy
Subtract dy from both sides. Anything subtracted from zero gives its negation.
-dxy^{2}+2dxy-dx=-dy
Reorder the terms.
\left(-dy^{2}+2dy-d\right)x=-dy
Combine all terms containing x.
\frac{\left(-dy^{2}+2dy-d\right)x}{-dy^{2}+2dy-d}=-\frac{dy}{-dy^{2}+2dy-d}
Divide both sides by -dy^{2}+2dy-d.
x=-\frac{dy}{-dy^{2}+2dy-d}
Dividing by -dy^{2}+2dy-d undoes the multiplication by -dy^{2}+2dy-d.
x=\frac{y}{\left(1-y\right)^{2}}
Divide -dy by -dy^{2}+2dy-d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}