d y = \frac { 2 x + x y ^ { 2 } } { 4 y + y x ^ { 2 } }
Solve for d
d=\frac{x\left(y^{2}+2\right)}{y^{2}\left(x^{2}+4\right)}
y\neq 0
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{4+4y^{2}+y^{4}-16d^{2}y^{4}}+y^{2}+2}{2dy^{2}}\text{; }x=\frac{-\sqrt{4+4y^{2}+y^{4}-16d^{2}y^{4}}+y^{2}+2}{2dy^{2}}\text{, }&d\neq 0\text{ and }y\neq 0\text{ and }|d|\leq \frac{1}{4}+\frac{1}{2y^{2}}\\x=0\text{, }&d=0\text{ and }y\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
dyy\left(x^{2}+4\right)=2x+xy^{2}
Multiply both sides of the equation by y\left(x^{2}+4\right).
dy^{2}\left(x^{2}+4\right)=2x+xy^{2}
Multiply y and y to get y^{2}.
dy^{2}x^{2}+4dy^{2}=2x+xy^{2}
Use the distributive property to multiply dy^{2} by x^{2}+4.
\left(y^{2}x^{2}+4y^{2}\right)d=2x+xy^{2}
Combine all terms containing d.
\left(x^{2}y^{2}+4y^{2}\right)d=xy^{2}+2x
The equation is in standard form.
\frac{\left(x^{2}y^{2}+4y^{2}\right)d}{x^{2}y^{2}+4y^{2}}=\frac{x\left(y^{2}+2\right)}{x^{2}y^{2}+4y^{2}}
Divide both sides by y^{2}x^{2}+4y^{2}.
d=\frac{x\left(y^{2}+2\right)}{x^{2}y^{2}+4y^{2}}
Dividing by y^{2}x^{2}+4y^{2} undoes the multiplication by y^{2}x^{2}+4y^{2}.
d=\frac{x\left(y^{2}+2\right)}{y^{2}\left(x^{2}+4\right)}
Divide x\left(2+y^{2}\right) by y^{2}x^{2}+4y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}