Skip to main content
Solve for d
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

dyy\left(x^{2}+4\right)=2x+xy^{2}
Multiply both sides of the equation by y\left(x^{2}+4\right).
dy^{2}\left(x^{2}+4\right)=2x+xy^{2}
Multiply y and y to get y^{2}.
dy^{2}x^{2}+4dy^{2}=2x+xy^{2}
Use the distributive property to multiply dy^{2} by x^{2}+4.
\left(y^{2}x^{2}+4y^{2}\right)d=2x+xy^{2}
Combine all terms containing d.
\left(x^{2}y^{2}+4y^{2}\right)d=xy^{2}+2x
The equation is in standard form.
\frac{\left(x^{2}y^{2}+4y^{2}\right)d}{x^{2}y^{2}+4y^{2}}=\frac{x\left(y^{2}+2\right)}{x^{2}y^{2}+4y^{2}}
Divide both sides by y^{2}x^{2}+4y^{2}.
d=\frac{x\left(y^{2}+2\right)}{x^{2}y^{2}+4y^{2}}
Dividing by y^{2}x^{2}+4y^{2} undoes the multiplication by y^{2}x^{2}+4y^{2}.
d=\frac{x\left(y^{2}+2\right)}{y^{2}\left(x^{2}+4\right)}
Divide x\left(2+y^{2}\right) by y^{2}x^{2}+4y^{2}.