d y = \frac { \sin ^ { 2 } \theta + \cos ^ { 2 } \theta } { 1 + \tan ^ { 2 } \theta } d \theta
Solve for y
\left\{\begin{matrix}y=\theta \left(\cos(\theta )\right)^{2}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\\y\in \mathrm{R}\text{, }&d=0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=0\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\\d\in \mathrm{R}\text{, }&y=\theta \left(\cos(\theta )\right)^{2}\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\frac{\pi \left(2n_{1}+1\right)}{2}\end{matrix}\right.
Graph
Share
Copied to clipboard
dy=\frac{\left(\left(\sin(\theta )\right)^{2}+\left(\cos(\theta )\right)^{2}\right)d}{1+\left(\tan(\theta )\right)^{2}}\theta
Express \frac{\left(\sin(\theta )\right)^{2}+\left(\cos(\theta )\right)^{2}}{1+\left(\tan(\theta )\right)^{2}}d as a single fraction.
dy=\frac{\left(\left(\sin(\theta )\right)^{2}+\left(\cos(\theta )\right)^{2}\right)d\theta }{1+\left(\tan(\theta )\right)^{2}}
Express \frac{\left(\left(\sin(\theta )\right)^{2}+\left(\cos(\theta )\right)^{2}\right)d}{1+\left(\tan(\theta )\right)^{2}}\theta as a single fraction.
dy=\frac{\left(\left(\sin(\theta )\right)^{2}d+\left(\cos(\theta )\right)^{2}d\right)\theta }{1+\left(\tan(\theta )\right)^{2}}
Use the distributive property to multiply \left(\sin(\theta )\right)^{2}+\left(\cos(\theta )\right)^{2} by d.
dy=\frac{\left(\sin(\theta )\right)^{2}d\theta +\left(\cos(\theta )\right)^{2}d\theta }{1+\left(\tan(\theta )\right)^{2}}
Use the distributive property to multiply \left(\sin(\theta )\right)^{2}d+\left(\cos(\theta )\right)^{2}d by \theta .
dy=\frac{d\theta \left(\sin(\theta )\right)^{2}+d\theta \left(\cos(\theta )\right)^{2}}{\left(\tan(\theta )\right)^{2}+1}
The equation is in standard form.
\frac{dy}{d}=\frac{d\theta \left(\cos(\theta )\right)^{2}}{d}
Divide both sides by d.
y=\frac{d\theta \left(\cos(\theta )\right)^{2}}{d}
Dividing by d undoes the multiplication by d.
y=\theta \left(\cos(\theta )\right)^{2}
Divide d\theta \left(\cos(\theta )\right)^{2} by d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}