d y = \cos ( \tan ^ { - 1 } e ^ { - x } ) x - 1
Solve for d
\left\{\begin{matrix}d=\frac{xe^{x}}{y\sqrt{e^{2x}+1}}-\frac{1}{y}\text{, }&y\neq 0\\d\in \mathrm{R}\text{, }&-\frac{x}{\sqrt{\frac{1}{e^{2x}}+1}}+1=0\text{ and }y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
yd=x\cos(\arctan(\frac{1}{e^{x}}))-1
The equation is in standard form.
\frac{yd}{y}=\frac{\frac{x}{\sqrt{\frac{1}{e^{2x}}+1}}-1}{y}
Divide both sides by y.
d=\frac{\frac{x}{\sqrt{\frac{1}{e^{2x}}+1}}-1}{y}
Dividing by y undoes the multiplication by y.
d=\frac{\frac{xe^{x}}{\sqrt{e^{2x}+1}}-1}{y}
Divide \frac{x}{\sqrt{1+\frac{1}{e^{2x}}}}-1 by y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}