d y / d x = ( 3 x - 2 ) ( 2 y + 1 )
Solve for d
d\neq 0
y=-\frac{2-3x}{4-5x}\text{ and }x\neq \frac{4}{5}
Solve for x
x=\frac{2\left(2y+1\right)}{5y+3}
y\neq -\frac{3}{5}\text{ and }d\neq 0
Graph
Share
Copied to clipboard
dyx=\left(3x-2\right)\left(2y+1\right)d
Variable d cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by d.
dyx=\left(6xy+3x-4y-2\right)d
Use the distributive property to multiply 3x-2 by 2y+1.
dyx=6xyd+3xd-4yd-2d
Use the distributive property to multiply 6xy+3x-4y-2 by d.
dyx-6xyd=3xd-4yd-2d
Subtract 6xyd from both sides.
-5dyx=3xd-4yd-2d
Combine dyx and -6xyd to get -5dyx.
-5dyx-3xd=-4yd-2d
Subtract 3xd from both sides.
-5dyx-3xd+4yd=-2d
Add 4yd to both sides.
-5dyx-3xd+4yd+2d=0
Add 2d to both sides.
\left(-5yx-3x+4y+2\right)d=0
Combine all terms containing d.
\left(2+4y-3x-5xy\right)d=0
The equation is in standard form.
d=0
Divide 0 by -5yx-3x+4y+2.
d\in \emptyset
Variable d cannot be equal to 0.
dyx=\left(3x-2\right)\left(2y+1\right)d
Multiply both sides of the equation by d.
dyx=\left(6xy+3x-4y-2\right)d
Use the distributive property to multiply 3x-2 by 2y+1.
dyx=6xyd+3xd-4yd-2d
Use the distributive property to multiply 6xy+3x-4y-2 by d.
dyx-6xyd=3xd-4yd-2d
Subtract 6xyd from both sides.
-5dyx=3xd-4yd-2d
Combine dyx and -6xyd to get -5dyx.
-5dyx-3xd=-4yd-2d
Subtract 3xd from both sides.
\left(-5dy-3d\right)x=-4yd-2d
Combine all terms containing x.
\left(-5dy-3d\right)x=-4dy-2d
The equation is in standard form.
\frac{\left(-5dy-3d\right)x}{-5dy-3d}=\frac{-4dy-2d}{-5dy-3d}
Divide both sides by -5dy-3d.
x=\frac{-4dy-2d}{-5dy-3d}
Dividing by -5dy-3d undoes the multiplication by -5dy-3d.
x=\frac{2\left(2y+1\right)}{5y+3}
Divide -2d-4dy by -5dy-3d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}