d x = - d ( 5 x - 2 )
Solve for d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&x=\frac{1}{3}\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x=\frac{1}{3}\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&d=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&x=\frac{1}{3}\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=\frac{1}{3}\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&d=0\end{matrix}\right.
Graph
Share
Copied to clipboard
dx=5\left(-d\right)x-2\left(-d\right)
Use the distributive property to multiply -d by 5x-2.
dx=5\left(-d\right)x+2d
Multiply -2 and -1 to get 2.
dx-5\left(-d\right)x=2d
Subtract 5\left(-d\right)x from both sides.
dx-5\left(-d\right)x-2d=0
Subtract 2d from both sides.
dx-5\left(-1\right)dx-2d=0
Multiply -1 and 5 to get -5.
dx+5dx-2d=0
Multiply -5 and -1 to get 5.
6dx-2d=0
Combine dx and 5dx to get 6dx.
\left(6x-2\right)d=0
Combine all terms containing d.
d=0
Divide 0 by 6x-2.
dx=5\left(-d\right)x-2\left(-d\right)
Use the distributive property to multiply -d by 5x-2.
dx=5\left(-d\right)x+2d
Multiply -2 and -1 to get 2.
dx-5\left(-d\right)x=2d
Subtract 5\left(-d\right)x from both sides.
dx-5\left(-1\right)dx=2d
Multiply -1 and 5 to get -5.
dx+5dx=2d
Multiply -5 and -1 to get 5.
6dx=2d
Combine dx and 5dx to get 6dx.
\frac{6dx}{6d}=\frac{2d}{6d}
Divide both sides by 6d.
x=\frac{2d}{6d}
Dividing by 6d undoes the multiplication by 6d.
x=\frac{1}{3}
Divide 2d by 6d.
dx=5\left(-d\right)x-2\left(-d\right)
Use the distributive property to multiply -d by 5x-2.
dx=5\left(-d\right)x+2d
Multiply -2 and -1 to get 2.
dx-5\left(-d\right)x=2d
Subtract 5\left(-d\right)x from both sides.
dx-5\left(-d\right)x-2d=0
Subtract 2d from both sides.
dx-5\left(-1\right)dx-2d=0
Multiply -1 and 5 to get -5.
dx+5dx-2d=0
Multiply -5 and -1 to get 5.
6dx-2d=0
Combine dx and 5dx to get 6dx.
\left(6x-2\right)d=0
Combine all terms containing d.
d=0
Divide 0 by 6x-2.
dx=5\left(-d\right)x-2\left(-d\right)
Use the distributive property to multiply -d by 5x-2.
dx=5\left(-d\right)x+2d
Multiply -2 and -1 to get 2.
dx-5\left(-d\right)x=2d
Subtract 5\left(-d\right)x from both sides.
dx-5\left(-1\right)dx=2d
Multiply -1 and 5 to get -5.
dx+5dx=2d
Multiply -5 and -1 to get 5.
6dx=2d
Combine dx and 5dx to get 6dx.
\frac{6dx}{6d}=\frac{2d}{6d}
Divide both sides by 6d.
x=\frac{2d}{6d}
Dividing by 6d undoes the multiplication by 6d.
x=\frac{1}{3}
Divide 2d by 6d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}