d x = \frac { 3 x ^ { 5 / 3 } } { 5 } + c
Solve for c
c=dx-\frac{3x^{\frac{5}{3}}}{5}
Solve for d
\left\{\begin{matrix}d=\frac{3x^{\frac{2}{3}}}{5}+\frac{c}{x}\text{, }&x\neq 0\\d\in \mathrm{R}\text{, }&x=0\text{ and }c=0\end{matrix}\right.
Graph
Share
Copied to clipboard
5dx=3x^{\frac{5}{3}}+5c
Multiply both sides of the equation by 5.
3x^{\frac{5}{3}}+5c=5dx
Swap sides so that all variable terms are on the left hand side.
5c=5dx-3x^{\frac{5}{3}}
Subtract 3x^{\frac{5}{3}} from both sides.
\frac{5c}{5}=\frac{x\left(5d-3x^{\frac{2}{3}}\right)}{5}
Divide both sides by 5.
c=\frac{x\left(5d-3x^{\frac{2}{3}}\right)}{5}
Dividing by 5 undoes the multiplication by 5.
c=dx-\frac{3x^{\frac{5}{3}}}{5}
Divide x\left(5d-3x^{\frac{2}{3}}\right) by 5.
5dx=3x^{\frac{5}{3}}+5c
Multiply both sides of the equation by 5.
5xd=3x^{\frac{5}{3}}+5c
The equation is in standard form.
\frac{5xd}{5x}=\frac{3x^{\frac{5}{3}}+5c}{5x}
Divide both sides by 5x.
d=\frac{3x^{\frac{5}{3}}+5c}{5x}
Dividing by 5x undoes the multiplication by 5x.
d=\frac{3x^{\frac{2}{3}}}{5}+\frac{c}{x}
Divide 3x^{\frac{5}{3}}+5c by 5x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}