d v = T d s - p d v
Solve for T
\left\{\begin{matrix}T=\frac{v\left(p+1\right)}{s}\text{, }&s\neq 0\\T\in \mathrm{R}\text{, }&\left(v=0\text{ and }s=0\right)\text{ or }\left(p=-1\text{ and }s=0\right)\text{ or }d=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&\left(T=0\text{ and }p=-1\right)\text{ or }\left(s=0\text{ and }p=-1\right)\text{ or }\left(v=\frac{Ts}{p+1}\text{ and }p\neq -1\right)\end{matrix}\right.
Share
Copied to clipboard
Tds-pdv=dv
Swap sides so that all variable terms are on the left hand side.
Tds=dv+pdv
Add pdv to both sides.
dsT=dpv+dv
The equation is in standard form.
\frac{dsT}{ds}=\frac{dv\left(p+1\right)}{ds}
Divide both sides by ds.
T=\frac{dv\left(p+1\right)}{ds}
Dividing by ds undoes the multiplication by ds.
T=\frac{v\left(p+1\right)}{s}
Divide dv\left(1+p\right) by ds.
dv+pdv=Tds
Add pdv to both sides.
dv+pdv-Tds=0
Subtract Tds from both sides.
dpv-Tds+dv=0
Reorder the terms.
\left(pv-Ts+v\right)d=0
Combine all terms containing d.
d=0
Divide 0 by pv-Ts+v.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}