Skip to main content
Solve for d
Tick mark Image
Solve for t
Tick mark Image
Graph

Similar Problems from Web Search

Share

dtx\times 1=\left(t+1\right)\left(t^{2}+1\right)dx
Multiply both sides of the equation by x\left(t+1\right)\left(t^{2}+1\right), the least common multiple of t^{3}+t^{2}+t+1,x.
dtx\times 1=\left(t^{3}+t+t^{2}+1\right)dx
Use the distributive property to multiply t+1 by t^{2}+1.
dtx\times 1=\left(t^{3}d+td+t^{2}d+d\right)x
Use the distributive property to multiply t^{3}+t+t^{2}+1 by d.
dtx\times 1=t^{3}dx+tdx+t^{2}dx+dx
Use the distributive property to multiply t^{3}d+td+t^{2}d+d by x.
dtx\times 1-t^{3}dx=tdx+t^{2}dx+dx
Subtract t^{3}dx from both sides.
dtx\times 1-t^{3}dx-tdx=t^{2}dx+dx
Subtract tdx from both sides.
dtx\times 1-t^{3}dx-tdx-t^{2}dx=dx
Subtract t^{2}dx from both sides.
dtx\times 1-t^{3}dx-tdx-t^{2}dx-dx=0
Subtract dx from both sides.
dtx-dxt^{3}-dtx-dxt^{2}-dx=0
Reorder the terms.
-dxt^{3}-dxt^{2}-dx=0
Combine dtx and -dtx to get 0.
\left(-xt^{3}-xt^{2}-x\right)d=0
Combine all terms containing d.
d=0
Divide 0 by -xt^{3}-xt^{2}-x.