d s = ( v _ { 0 } + a t ) d t
Solve for a
\left\{\begin{matrix}a=-\frac{tv_{0}-s}{t^{2}}\text{, }&t\neq 0\\a\in \mathrm{R}\text{, }&\left(s=0\text{ and }t=0\right)\text{ or }d=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&s=t\left(at+v_{0}\right)\end{matrix}\right.
Share
Copied to clipboard
ds=\left(v_{0}d+atd\right)t
Use the distributive property to multiply v_{0}+at by d.
ds=v_{0}dt+adt^{2}
Use the distributive property to multiply v_{0}d+atd by t.
v_{0}dt+adt^{2}=ds
Swap sides so that all variable terms are on the left hand side.
adt^{2}=ds-v_{0}dt
Subtract v_{0}dt from both sides.
adt^{2}=ds-dtv_{0}
Reorder the terms.
dt^{2}a=ds-dtv_{0}
The equation is in standard form.
\frac{dt^{2}a}{dt^{2}}=\frac{d\left(s-tv_{0}\right)}{dt^{2}}
Divide both sides by dt^{2}.
a=\frac{d\left(s-tv_{0}\right)}{dt^{2}}
Dividing by dt^{2} undoes the multiplication by dt^{2}.
a=\frac{s-tv_{0}}{t^{2}}
Divide d\left(s-tv_{0}\right) by dt^{2}.
ds=\left(v_{0}d+atd\right)t
Use the distributive property to multiply v_{0}+at by d.
ds=v_{0}dt+adt^{2}
Use the distributive property to multiply v_{0}d+atd by t.
ds-v_{0}dt=adt^{2}
Subtract v_{0}dt from both sides.
ds-v_{0}dt-adt^{2}=0
Subtract adt^{2} from both sides.
ds-adt^{2}-dtv_{0}=0
Reorder the terms.
\left(s-at^{2}-tv_{0}\right)d=0
Combine all terms containing d.
d=0
Divide 0 by s-at^{2}-tv_{0}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}