d s = \frac { ( d Q ) } { T }
Solve for Q
\left\{\begin{matrix}Q=Ts\text{, }&T\neq 0\\Q\in \mathrm{R}\text{, }&d=0\text{ and }T\neq 0\end{matrix}\right.
Solve for T
\left\{\begin{matrix}T=\frac{Q}{s}\text{, }&Q\neq 0\text{ and }s\neq 0\\T\neq 0\text{, }&\left(s=0\text{ and }Q=0\right)\text{ or }d=0\end{matrix}\right.
Share
Copied to clipboard
dsT=dQ
Multiply both sides of the equation by T.
dQ=dsT
Swap sides so that all variable terms are on the left hand side.
dQ=Tds
The equation is in standard form.
\frac{dQ}{d}=\frac{Tds}{d}
Divide both sides by d.
Q=\frac{Tds}{d}
Dividing by d undoes the multiplication by d.
Q=Ts
Divide dsT by d.
dsT=dQ
Variable T cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by T.
dsT=Qd
The equation is in standard form.
\frac{dsT}{ds}=\frac{Qd}{ds}
Divide both sides by ds.
T=\frac{Qd}{ds}
Dividing by ds undoes the multiplication by ds.
T=\frac{Q}{s}
Divide dQ by ds.
T=\frac{Q}{s}\text{, }T\neq 0
Variable T cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}