Solve for d
d=\frac{\sqrt{41}+9}{20}\approx 0.770156212
d=\frac{9-\sqrt{41}}{20}\approx 0.129843788
Share
Copied to clipboard
10d^{2}-9d+1=0
Use the distributive property to multiply d by 10d-9.
d=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 10}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, -9 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-\left(-9\right)±\sqrt{81-4\times 10}}{2\times 10}
Square -9.
d=\frac{-\left(-9\right)±\sqrt{81-40}}{2\times 10}
Multiply -4 times 10.
d=\frac{-\left(-9\right)±\sqrt{41}}{2\times 10}
Add 81 to -40.
d=\frac{9±\sqrt{41}}{2\times 10}
The opposite of -9 is 9.
d=\frac{9±\sqrt{41}}{20}
Multiply 2 times 10.
d=\frac{\sqrt{41}+9}{20}
Now solve the equation d=\frac{9±\sqrt{41}}{20} when ± is plus. Add 9 to \sqrt{41}.
d=\frac{9-\sqrt{41}}{20}
Now solve the equation d=\frac{9±\sqrt{41}}{20} when ± is minus. Subtract \sqrt{41} from 9.
d=\frac{\sqrt{41}+9}{20} d=\frac{9-\sqrt{41}}{20}
The equation is now solved.
10d^{2}-9d+1=0
Use the distributive property to multiply d by 10d-9.
10d^{2}-9d=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\frac{10d^{2}-9d}{10}=-\frac{1}{10}
Divide both sides by 10.
d^{2}-\frac{9}{10}d=-\frac{1}{10}
Dividing by 10 undoes the multiplication by 10.
d^{2}-\frac{9}{10}d+\left(-\frac{9}{20}\right)^{2}=-\frac{1}{10}+\left(-\frac{9}{20}\right)^{2}
Divide -\frac{9}{10}, the coefficient of the x term, by 2 to get -\frac{9}{20}. Then add the square of -\frac{9}{20} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
d^{2}-\frac{9}{10}d+\frac{81}{400}=-\frac{1}{10}+\frac{81}{400}
Square -\frac{9}{20} by squaring both the numerator and the denominator of the fraction.
d^{2}-\frac{9}{10}d+\frac{81}{400}=\frac{41}{400}
Add -\frac{1}{10} to \frac{81}{400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(d-\frac{9}{20}\right)^{2}=\frac{41}{400}
Factor d^{2}-\frac{9}{10}d+\frac{81}{400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d-\frac{9}{20}\right)^{2}}=\sqrt{\frac{41}{400}}
Take the square root of both sides of the equation.
d-\frac{9}{20}=\frac{\sqrt{41}}{20} d-\frac{9}{20}=-\frac{\sqrt{41}}{20}
Simplify.
d=\frac{\sqrt{41}+9}{20} d=\frac{9-\sqrt{41}}{20}
Add \frac{9}{20} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}