d \log ( \frac { x } { x } ) + 2 x \sin x ^ { 2 } d x = 0
Solve for d (complex solution)
\left\{\begin{matrix}d=0\text{, }&x\neq 0\\d\in \mathrm{C}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }\left(x=-i\sqrt{-\pi n_{1}}\text{ or }x=i\sqrt{-\pi n_{1}}\right)\text{ and }x\neq 0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x=i\sqrt{-\pi n_{1}}\text{, }n_{1}\in \mathrm{Z}\text{, }n_{1}\neq 0\text{; }x=-i\sqrt{-\pi n_{1}}\text{, }n_{1}\in \mathrm{Z}\text{, }n_{1}\neq 0\text{, }&\text{unconditionally}\\x\neq 0\text{, }&d=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=0\text{, }&x\neq 0\\d\in \mathrm{R}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }|x|=\sqrt{\pi n_{1}}\text{, }not(n_{1}<0)\text{ and }x\neq 0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=-\sqrt{\pi n_{1}}\text{, }n_{1}\in \mathrm{Z}\text{, }n_{1}\geq 1\text{; }x=\sqrt{\pi n_{1}}\text{, }n_{1}\in \mathrm{Z}\text{, }n_{1}\geq 1\text{, }&\text{unconditionally}\\x\neq 0\text{, }&d=0\end{matrix}\right.
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}