Solve for d
d\in \left(-\infty,0\right)\cup \left(1,\infty\right)
Share
Copied to clipboard
d^{2}-d>0
Subtract d from both sides.
d\left(d-1\right)>0
Factor out d.
d<0 d-1<0
For the product to be positive, d and d-1 have to be both negative or both positive. Consider the case when d and d-1 are both negative.
d<0
The solution satisfying both inequalities is d<0.
d-1>0 d>0
Consider the case when d and d-1 are both positive.
d>1
The solution satisfying both inequalities is d>1.
d<0\text{; }d>1
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}