d ^ { 2 } + d x - x = 0
Solve for x
x=-\frac{d^{2}}{d-1}
d\neq 1
Solve for d (complex solution)
d=\frac{\sqrt{x\left(x+4\right)}-x}{2}
d=\frac{-\sqrt{x\left(x+4\right)}-x}{2}
Solve for d
d=\frac{\sqrt{x\left(x+4\right)}-x}{2}
d=\frac{-\sqrt{x\left(x+4\right)}-x}{2}\text{, }x\leq -4\text{ or }x\geq 0
Graph
Share
Copied to clipboard
dx-x=-d^{2}
Subtract d^{2} from both sides. Anything subtracted from zero gives its negation.
\left(d-1\right)x=-d^{2}
Combine all terms containing x.
\frac{\left(d-1\right)x}{d-1}=-\frac{d^{2}}{d-1}
Divide both sides by d-1.
x=-\frac{d^{2}}{d-1}
Dividing by d-1 undoes the multiplication by d-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}