Solve for d
d=3
Share
Copied to clipboard
d^{2}=\left(\sqrt{12-d}\right)^{2}
Square both sides of the equation.
d^{2}=12-d
Calculate \sqrt{12-d} to the power of 2 and get 12-d.
d^{2}-12=-d
Subtract 12 from both sides.
d^{2}-12+d=0
Add d to both sides.
d^{2}+d-12=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=1 ab=-12
To solve the equation, factor d^{2}+d-12 using formula d^{2}+\left(a+b\right)d+ab=\left(d+a\right)\left(d+b\right). To find a and b, set up a system to be solved.
-1,12 -2,6 -3,4
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -12.
-1+12=11 -2+6=4 -3+4=1
Calculate the sum for each pair.
a=-3 b=4
The solution is the pair that gives sum 1.
\left(d-3\right)\left(d+4\right)
Rewrite factored expression \left(d+a\right)\left(d+b\right) using the obtained values.
d=3 d=-4
To find equation solutions, solve d-3=0 and d+4=0.
3=\sqrt{12-3}
Substitute 3 for d in the equation d=\sqrt{12-d}.
3=3
Simplify. The value d=3 satisfies the equation.
-4=\sqrt{12-\left(-4\right)}
Substitute -4 for d in the equation d=\sqrt{12-d}.
-4=4
Simplify. The value d=-4 does not satisfy the equation because the left and the right hand side have opposite signs.
d=3
Equation d=\sqrt{12-d} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}