Solve for c
c=\frac{8d}{8-d}
d\neq 8
Solve for d
d=\frac{8c}{c+8}
c\neq -8
Share
Copied to clipboard
d\left(c+8\right)=8c
Variable c cannot be equal to -8 since division by zero is not defined. Multiply both sides of the equation by c+8.
dc+8d=8c
Use the distributive property to multiply d by c+8.
dc+8d-8c=0
Subtract 8c from both sides.
dc-8c=-8d
Subtract 8d from both sides. Anything subtracted from zero gives its negation.
\left(d-8\right)c=-8d
Combine all terms containing c.
\frac{\left(d-8\right)c}{d-8}=-\frac{8d}{d-8}
Divide both sides by d-8.
c=-\frac{8d}{d-8}
Dividing by d-8 undoes the multiplication by d-8.
c=-\frac{8d}{d-8}\text{, }c\neq -8
Variable c cannot be equal to -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}