Solve for L (complex solution)
\left\{\begin{matrix}L=\frac{3c^{2}+32}{4d^{2}}\text{, }&d\neq 0\\L\in \mathrm{C}\text{, }&\left(c=\frac{4\sqrt{6}i}{3}\text{ or }c=-\frac{4\sqrt{6}i}{3}\right)\text{ and }d=0\end{matrix}\right.
Solve for L
L=\frac{3c^{2}+32}{4d^{2}}
d\neq 0
Solve for c (complex solution)
c=-\frac{2\sqrt{3\left(Ld^{2}-8\right)}}{3}
c=\frac{2\sqrt{3\left(Ld^{2}-8\right)}}{3}
Solve for c
c=\frac{2\sqrt{3\left(Ld^{2}-8\right)}}{3}
c=-\frac{2\sqrt{3\left(Ld^{2}-8\right)}}{3}\text{, }L\geq \frac{8}{d^{2}}\text{ or }d=0
Share
Copied to clipboard
3\left(c^{2}-\frac{4d^{2}}{3}L\right)+32=0
Multiply both sides of the equation by 3.
3\left(c^{2}-\frac{4d^{2}L}{3}\right)+32=0
Express \frac{4d^{2}}{3}L as a single fraction.
3c^{2}+3\left(-\frac{4d^{2}L}{3}\right)+32=0
Use the distributive property to multiply 3 by c^{2}-\frac{4d^{2}L}{3}.
3c^{2}+\frac{-3\times 4d^{2}L}{3}+32=0
Express 3\left(-\frac{4d^{2}L}{3}\right) as a single fraction.
3c^{2}-4d^{2}L+32=0
Cancel out 3 and 3.
-4d^{2}L+32=-3c^{2}
Subtract 3c^{2} from both sides. Anything subtracted from zero gives its negation.
-4d^{2}L=-3c^{2}-32
Subtract 32 from both sides.
\left(-4d^{2}\right)L=-3c^{2}-32
The equation is in standard form.
\frac{\left(-4d^{2}\right)L}{-4d^{2}}=\frac{-3c^{2}-32}{-4d^{2}}
Divide both sides by -4d^{2}.
L=\frac{-3c^{2}-32}{-4d^{2}}
Dividing by -4d^{2} undoes the multiplication by -4d^{2}.
L=\frac{3c^{2}+32}{4d^{2}}
Divide -3c^{2}-32 by -4d^{2}.
3\left(c^{2}-\frac{4d^{2}}{3}L\right)+32=0
Multiply both sides of the equation by 3.
3\left(c^{2}-\frac{4d^{2}L}{3}\right)+32=0
Express \frac{4d^{2}}{3}L as a single fraction.
3c^{2}+3\left(-\frac{4d^{2}L}{3}\right)+32=0
Use the distributive property to multiply 3 by c^{2}-\frac{4d^{2}L}{3}.
3c^{2}+\frac{-3\times 4d^{2}L}{3}+32=0
Express 3\left(-\frac{4d^{2}L}{3}\right) as a single fraction.
3c^{2}-4d^{2}L+32=0
Cancel out 3 and 3.
-4d^{2}L+32=-3c^{2}
Subtract 3c^{2} from both sides. Anything subtracted from zero gives its negation.
-4d^{2}L=-3c^{2}-32
Subtract 32 from both sides.
\left(-4d^{2}\right)L=-3c^{2}-32
The equation is in standard form.
\frac{\left(-4d^{2}\right)L}{-4d^{2}}=\frac{-3c^{2}-32}{-4d^{2}}
Divide both sides by -4d^{2}.
L=\frac{-3c^{2}-32}{-4d^{2}}
Dividing by -4d^{2} undoes the multiplication by -4d^{2}.
L=\frac{3c^{2}+32}{4d^{2}}
Divide -3c^{2}-32 by -4d^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}