Skip to main content
Solve for c
Tick mark Image

Similar Problems from Web Search

Share

\left(c^{2}\right)^{2}=\left(4\sqrt{c^{2}+1}\right)^{2}
Square both sides of the equation.
c^{4}=\left(4\sqrt{c^{2}+1}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
c^{4}=4^{2}\left(\sqrt{c^{2}+1}\right)^{2}
Expand \left(4\sqrt{c^{2}+1}\right)^{2}.
c^{4}=16\left(\sqrt{c^{2}+1}\right)^{2}
Calculate 4 to the power of 2 and get 16.
c^{4}=16\left(c^{2}+1\right)
Calculate \sqrt{c^{2}+1} to the power of 2 and get c^{2}+1.
c^{4}=16c^{2}+16
Use the distributive property to multiply 16 by c^{2}+1.
c^{4}-16c^{2}=16
Subtract 16c^{2} from both sides.
c^{4}-16c^{2}-16=0
Subtract 16 from both sides.
t^{2}-16t-16=0
Substitute t for c^{2}.
t=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 1\left(-16\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -16 for b, and -16 for c in the quadratic formula.
t=\frac{16±8\sqrt{5}}{2}
Do the calculations.
t=4\sqrt{5}+8 t=8-4\sqrt{5}
Solve the equation t=\frac{16±8\sqrt{5}}{2} when ± is plus and when ± is minus.
c=2\sqrt{\sqrt{5}+2} c=-2\sqrt{\sqrt{5}+2}
Since c=t^{2}, the solutions are obtained by evaluating c=±\sqrt{t} for positive t.
\left(2\sqrt{\sqrt{5}+2}\right)^{2}=4\sqrt{\left(2\sqrt{\sqrt{5}+2}\right)^{2}+1}
Substitute 2\sqrt{\sqrt{5}+2} for c in the equation c^{2}=4\sqrt{c^{2}+1}.
4\times 5^{\frac{1}{2}}+8=4\times 5^{\frac{1}{2}}+8
Simplify. The value c=2\sqrt{\sqrt{5}+2} satisfies the equation.
\left(-2\sqrt{\sqrt{5}+2}\right)^{2}=4\sqrt{\left(-2\sqrt{\sqrt{5}+2}\right)^{2}+1}
Substitute -2\sqrt{\sqrt{5}+2} for c in the equation c^{2}=4\sqrt{c^{2}+1}.
4\times 5^{\frac{1}{2}}+8=4\times 5^{\frac{1}{2}}+8
Simplify. The value c=-2\sqrt{\sqrt{5}+2} satisfies the equation.
c=2\sqrt{\sqrt{5}+2} c=-2\sqrt{\sqrt{5}+2}
List all solutions of c^{2}=4\sqrt{c^{2}+1}.