Solve for c
c=-\frac{t^{4}}{200}+t^{2}
Solve for t (complex solution)
t=\sqrt{10\sqrt{100-2c}+100}
t=-\sqrt{10\sqrt{100-2c}+100}
t=-\sqrt{-10\sqrt{100-2c}+100}
t=\sqrt{-10\sqrt{100-2c}+100}
Solve for t
\left\{\begin{matrix}t=-\sqrt{-10\sqrt{100-2c}+100}\text{; }t=\sqrt{-10\sqrt{100-2c}+100}\text{, }&c\geq 0\text{ and }c\leq 50\\t=-\sqrt{10\sqrt{100-2c}+100}\text{; }t=\sqrt{10\sqrt{100-2c}+100}\text{, }&c\leq 50\end{matrix}\right.
Share
Copied to clipboard
c=\frac{t^{2}\left(200-t^{2}\right)}{200}
Express \frac{t^{2}}{200}\left(200-t^{2}\right) as a single fraction.
c=\frac{200t^{2}-t^{4}}{200}
Use the distributive property to multiply t^{2} by 200-t^{2}.
c=t^{2}-\frac{1}{200}t^{4}
Divide each term of 200t^{2}-t^{4} by 200 to get t^{2}-\frac{1}{200}t^{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}