Solve for a
a=c\left(b+1\right)
b\neq 0
Solve for b
\left\{\begin{matrix}b=\frac{a}{c}-1\text{, }&c\neq a\text{ and }c\neq 0\\b\neq 0\text{, }&c=0\text{ and }a=0\end{matrix}\right.
Share
Copied to clipboard
cb=a-c
Multiply both sides of the equation by b.
a-c=cb
Swap sides so that all variable terms are on the left hand side.
a=cb+c
Add c to both sides.
cb=a-c
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by b.
\frac{cb}{c}=\frac{a-c}{c}
Divide both sides by c.
b=\frac{a-c}{c}
Dividing by c undoes the multiplication by c.
b=\frac{a}{c}-1
Divide a-c by c.
b=\frac{a}{c}-1\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}