Solve for a
a=\frac{3b^{2}-5c}{2}
Solve for b
b=\frac{\sqrt{6a+15c}}{3}
b=-\frac{\sqrt{6a+15c}}{3}\text{, }c\geq -\frac{2a}{5}
Share
Copied to clipboard
c=\frac{3}{5}b^{2}-\frac{2}{5}a
Divide each term of 3b^{2}-2a by 5 to get \frac{3}{5}b^{2}-\frac{2}{5}a.
\frac{3}{5}b^{2}-\frac{2}{5}a=c
Swap sides so that all variable terms are on the left hand side.
-\frac{2}{5}a=c-\frac{3}{5}b^{2}
Subtract \frac{3}{5}b^{2} from both sides.
-\frac{2}{5}a=-\frac{3b^{2}}{5}+c
The equation is in standard form.
\frac{-\frac{2}{5}a}{-\frac{2}{5}}=\frac{-\frac{3b^{2}}{5}+c}{-\frac{2}{5}}
Divide both sides of the equation by -\frac{2}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{-\frac{3b^{2}}{5}+c}{-\frac{2}{5}}
Dividing by -\frac{2}{5} undoes the multiplication by -\frac{2}{5}.
a=\frac{3b^{2}-5c}{2}
Divide c-\frac{3b^{2}}{5} by -\frac{2}{5} by multiplying c-\frac{3b^{2}}{5} by the reciprocal of -\frac{2}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}