Solve for c
c = \frac{\sqrt{61} + 3}{2} \approx 5.405124838
Share
Copied to clipboard
c^{2}=\left(2\sqrt{16-\left(\sqrt{3}-\frac{\sqrt{3}}{2}c\right)^{2}}\right)^{2}
Square both sides of the equation.
c^{2}=\left(2\sqrt{16-\left(\sqrt{3}-\frac{\sqrt{3}c}{2}\right)^{2}}\right)^{2}
Express \frac{\sqrt{3}}{2}c as a single fraction.
c^{2}=\left(2\sqrt{16-\left(\left(\sqrt{3}\right)^{2}+2\sqrt{3}\left(-\frac{\sqrt{3}c}{2}\right)+\left(-\frac{\sqrt{3}c}{2}\right)^{2}\right)}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}-\frac{\sqrt{3}c}{2}\right)^{2}.
c^{2}=\left(2\sqrt{16-\left(3+2\sqrt{3}\left(-\frac{\sqrt{3}c}{2}\right)+\left(-\frac{\sqrt{3}c}{2}\right)^{2}\right)}\right)^{2}
The square of \sqrt{3} is 3.
c^{2}=\left(2\sqrt{16-\left(3+\frac{-2\sqrt{3}c}{2}\sqrt{3}+\left(-\frac{\sqrt{3}c}{2}\right)^{2}\right)}\right)^{2}
Express 2\left(-\frac{\sqrt{3}c}{2}\right) as a single fraction.
c^{2}=\left(2\sqrt{16-\left(3-\sqrt{3}c\sqrt{3}+\left(-\frac{\sqrt{3}c}{2}\right)^{2}\right)}\right)^{2}
Cancel out 2 and 2.
c^{2}=\left(2\sqrt{16-\left(3-\sqrt{3}c\sqrt{3}+\left(\frac{\sqrt{3}c}{2}\right)^{2}\right)}\right)^{2}
Calculate -\frac{\sqrt{3}c}{2} to the power of 2 and get \left(\frac{\sqrt{3}c}{2}\right)^{2}.
c^{2}=\left(2\sqrt{16-3+\sqrt{3}c\sqrt{3}-\left(\frac{\sqrt{3}c}{2}\right)^{2}}\right)^{2}
To find the opposite of 3-\sqrt{3}c\sqrt{3}+\left(\frac{\sqrt{3}c}{2}\right)^{2}, find the opposite of each term.
c^{2}=\left(2\sqrt{16-3+3c-\left(\frac{\sqrt{3}c}{2}\right)^{2}}\right)^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
c^{2}=\left(2\sqrt{13+3c-\left(\frac{\sqrt{3}c}{2}\right)^{2}}\right)^{2}
Subtract 3 from 16 to get 13.
c^{2}=\left(2\sqrt{13+3c-\frac{\left(\sqrt{3}c\right)^{2}}{2^{2}}}\right)^{2}
To raise \frac{\sqrt{3}c}{2} to a power, raise both numerator and denominator to the power and then divide.
c^{2}=\left(2\sqrt{\frac{\left(13+3c\right)\times 2^{2}}{2^{2}}-\frac{\left(\sqrt{3}c\right)^{2}}{2^{2}}}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 13+3c times \frac{2^{2}}{2^{2}}.
c^{2}=\left(2\sqrt{\frac{\left(13+3c\right)\times 2^{2}-\left(\sqrt{3}c\right)^{2}}{2^{2}}}\right)^{2}
Since \frac{\left(13+3c\right)\times 2^{2}}{2^{2}} and \frac{\left(\sqrt{3}c\right)^{2}}{2^{2}} have the same denominator, subtract them by subtracting their numerators.
c^{2}=\left(2\sqrt{13+\frac{3c\times 2^{2}}{2^{2}}-\frac{\left(\sqrt{3}c\right)^{2}}{2^{2}}}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3c times \frac{2^{2}}{2^{2}}.
c^{2}=\left(2\sqrt{13+\frac{3c\times 2^{2}-\left(\sqrt{3}c\right)^{2}}{2^{2}}}\right)^{2}
Since \frac{3c\times 2^{2}}{2^{2}} and \frac{\left(\sqrt{3}c\right)^{2}}{2^{2}} have the same denominator, subtract them by subtracting their numerators.
c^{2}=2^{2}\left(\sqrt{13+\frac{3c\times 2^{2}-\left(\sqrt{3}c\right)^{2}}{2^{2}}}\right)^{2}
Expand \left(2\sqrt{13+\frac{3c\times 2^{2}-\left(\sqrt{3}c\right)^{2}}{2^{2}}}\right)^{2}.
c^{2}=4\left(\sqrt{13+\frac{3c\times 2^{2}-\left(\sqrt{3}c\right)^{2}}{2^{2}}}\right)^{2}
Calculate 2 to the power of 2 and get 4.
c^{2}=4\left(\sqrt{13+\frac{3c\times 4-\left(\sqrt{3}c\right)^{2}}{2^{2}}}\right)^{2}
Calculate 2 to the power of 2 and get 4.
c^{2}=4\left(\sqrt{13+\frac{12c-\left(\sqrt{3}c\right)^{2}}{2^{2}}}\right)^{2}
Multiply 3 and 4 to get 12.
c^{2}=4\left(\sqrt{13+\frac{12c-\left(\sqrt{3}\right)^{2}c^{2}}{2^{2}}}\right)^{2}
Expand \left(\sqrt{3}c\right)^{2}.
c^{2}=4\left(\sqrt{13+\frac{12c-3c^{2}}{2^{2}}}\right)^{2}
The square of \sqrt{3} is 3.
c^{2}=4\left(\sqrt{13+\frac{12c-3c^{2}}{4}}\right)^{2}
Calculate 2 to the power of 2 and get 4.
c^{2}=4\left(13+\frac{12c-3c^{2}}{4}\right)
Calculate \sqrt{13+\frac{12c-3c^{2}}{4}} to the power of 2 and get 13+\frac{12c-3c^{2}}{4}.
c^{2}=52+4\times \frac{12c-3c^{2}}{4}
Use the distributive property to multiply 4 by 13+\frac{12c-3c^{2}}{4}.
c^{2}=52+\frac{4\left(12c-3c^{2}\right)}{4}
Express 4\times \frac{12c-3c^{2}}{4} as a single fraction.
c^{2}=52+12c-3c^{2}
Cancel out 4 and 4.
c^{2}-52=12c-3c^{2}
Subtract 52 from both sides.
c^{2}-52-12c=-3c^{2}
Subtract 12c from both sides.
c^{2}-52-12c+3c^{2}=0
Add 3c^{2} to both sides.
4c^{2}-52-12c=0
Combine c^{2} and 3c^{2} to get 4c^{2}.
4c^{2}-12c-52=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
c=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\left(-52\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -12 for b, and -52 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-\left(-12\right)±\sqrt{144-4\times 4\left(-52\right)}}{2\times 4}
Square -12.
c=\frac{-\left(-12\right)±\sqrt{144-16\left(-52\right)}}{2\times 4}
Multiply -4 times 4.
c=\frac{-\left(-12\right)±\sqrt{144+832}}{2\times 4}
Multiply -16 times -52.
c=\frac{-\left(-12\right)±\sqrt{976}}{2\times 4}
Add 144 to 832.
c=\frac{-\left(-12\right)±4\sqrt{61}}{2\times 4}
Take the square root of 976.
c=\frac{12±4\sqrt{61}}{2\times 4}
The opposite of -12 is 12.
c=\frac{12±4\sqrt{61}}{8}
Multiply 2 times 4.
c=\frac{4\sqrt{61}+12}{8}
Now solve the equation c=\frac{12±4\sqrt{61}}{8} when ± is plus. Add 12 to 4\sqrt{61}.
c=\frac{\sqrt{61}+3}{2}
Divide 12+4\sqrt{61} by 8.
c=\frac{12-4\sqrt{61}}{8}
Now solve the equation c=\frac{12±4\sqrt{61}}{8} when ± is minus. Subtract 4\sqrt{61} from 12.
c=\frac{3-\sqrt{61}}{2}
Divide 12-4\sqrt{61} by 8.
c=\frac{\sqrt{61}+3}{2} c=\frac{3-\sqrt{61}}{2}
The equation is now solved.
\frac{\sqrt{61}+3}{2}=2\sqrt{16-\left(\sqrt{3}-\frac{\sqrt{3}}{2}\times \frac{\sqrt{61}+3}{2}\right)^{2}}
Substitute \frac{\sqrt{61}+3}{2} for c in the equation c=2\sqrt{16-\left(\sqrt{3}-\frac{\sqrt{3}}{2}c\right)^{2}}.
\frac{1}{2}\times 61^{\frac{1}{2}}+\frac{3}{2}=\frac{1}{2}\times 61^{\frac{1}{2}}+\frac{3}{2}
Simplify. The value c=\frac{\sqrt{61}+3}{2} satisfies the equation.
\frac{3-\sqrt{61}}{2}=2\sqrt{16-\left(\sqrt{3}-\frac{\sqrt{3}}{2}\times \frac{3-\sqrt{61}}{2}\right)^{2}}
Substitute \frac{3-\sqrt{61}}{2} for c in the equation c=2\sqrt{16-\left(\sqrt{3}-\frac{\sqrt{3}}{2}c\right)^{2}}.
\frac{3}{2}-\frac{1}{2}\times 61^{\frac{1}{2}}=\frac{1}{2}\times 61^{\frac{1}{2}}-\frac{3}{2}
Simplify. The value c=\frac{3-\sqrt{61}}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
c=\frac{\sqrt{61}+3}{2}
Equation c=2\sqrt{16-\left(\sqrt{3}-\frac{\sqrt{3}}{2}c\right)^{2}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}