Solve for b
b=-\frac{5}{2}+\frac{5}{4\sqrt{x}}
x>0
Solve for x
x=\frac{25}{4\left(2b+5\right)^{2}}
b>-\frac{5}{2}
Graph
Share
Copied to clipboard
4b\sqrt{x}=5-10\sqrt{x}
Multiply -1 and 10 to get -10.
4\sqrt{x}b=-10\sqrt{x}+5
The equation is in standard form.
\frac{4\sqrt{x}b}{4\sqrt{x}}=\frac{-10\sqrt{x}+5}{4\sqrt{x}}
Divide both sides by 4\sqrt{x}.
b=\frac{-10\sqrt{x}+5}{4\sqrt{x}}
Dividing by 4\sqrt{x} undoes the multiplication by 4\sqrt{x}.
b=-\frac{5}{2}+\frac{5}{4\sqrt{x}}
Divide 5-10\sqrt{x} by 4\sqrt{x}.
4b\sqrt{x}+10\sqrt{x}=5
Add 10\sqrt{x} to both sides.
\left(4b+10\right)\sqrt{x}=5
Combine all terms containing x.
\frac{\left(4b+10\right)\sqrt{x}}{4b+10}=\frac{5}{4b+10}
Divide both sides by 4b+10.
\sqrt{x}=\frac{5}{4b+10}
Dividing by 4b+10 undoes the multiplication by 4b+10.
\sqrt{x}=\frac{5}{2\left(2b+5\right)}
Divide 5 by 4b+10.
x=\frac{25}{4\left(2b+5\right)^{2}}
Square both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}