Solve for b
b=\frac{2^{\frac{3}{4}}\sqrt[4]{41}+18}{32}\approx 0.695489846
Share
Copied to clipboard
b\times 16-5=\left(\frac{1}{4}\right)^{-1}+\sqrt[4]{27-\frac{1}{2}-6}
Calculate \frac{1}{2} to the power of -4 and get 16.
b\times 16-5=4+\sqrt[4]{27-\frac{1}{2}-6}
Calculate \frac{1}{4} to the power of -1 and get 4.
b\times 16-5=4+\sqrt[4]{\frac{53}{2}-6}
Subtract \frac{1}{2} from 27 to get \frac{53}{2}.
b\times 16-5=4+\sqrt[4]{\frac{41}{2}}
Subtract 6 from \frac{53}{2} to get \frac{41}{2}.
b\times 16=4+\sqrt[4]{\frac{41}{2}}+5
Add 5 to both sides.
b\times 16=9+\sqrt[4]{\frac{41}{2}}
Add 4 and 5 to get 9.
16b=\sqrt[4]{\frac{41}{2}}+9
The equation is in standard form.
\frac{16b}{16}=\frac{\frac{2^{\frac{3}{4}}\sqrt[4]{41}}{2}+9}{16}
Divide both sides by 16.
b=\frac{\frac{2^{\frac{3}{4}}\sqrt[4]{41}}{2}+9}{16}
Dividing by 16 undoes the multiplication by 16.
b=\frac{2^{\frac{3}{4}}\sqrt[4]{41}}{32}+\frac{9}{16}
Divide 9+\frac{2^{\frac{3}{4}}\sqrt[4]{41}}{2} by 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}