Factor
\left(b-\left(13-4\sqrt{5}\right)\right)\left(b-\left(4\sqrt{5}+13\right)\right)
Evaluate
b^{2}-26b+89
Share
Copied to clipboard
b^{2}-26b+89=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
b=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\times 89}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-\left(-26\right)±\sqrt{676-4\times 89}}{2}
Square -26.
b=\frac{-\left(-26\right)±\sqrt{676-356}}{2}
Multiply -4 times 89.
b=\frac{-\left(-26\right)±\sqrt{320}}{2}
Add 676 to -356.
b=\frac{-\left(-26\right)±8\sqrt{5}}{2}
Take the square root of 320.
b=\frac{26±8\sqrt{5}}{2}
The opposite of -26 is 26.
b=\frac{8\sqrt{5}+26}{2}
Now solve the equation b=\frac{26±8\sqrt{5}}{2} when ± is plus. Add 26 to 8\sqrt{5}.
b=4\sqrt{5}+13
Divide 26+8\sqrt{5} by 2.
b=\frac{26-8\sqrt{5}}{2}
Now solve the equation b=\frac{26±8\sqrt{5}}{2} when ± is minus. Subtract 8\sqrt{5} from 26.
b=13-4\sqrt{5}
Divide 26-8\sqrt{5} by 2.
b^{2}-26b+89=\left(b-\left(4\sqrt{5}+13\right)\right)\left(b-\left(13-4\sqrt{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 13+4\sqrt{5} for x_{1} and 13-4\sqrt{5} for x_{2}.
x ^ 2 -26x +89 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 26 rs = 89
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 13 - u s = 13 + u
Two numbers r and s sum up to 26 exactly when the average of the two numbers is \frac{1}{2}*26 = 13. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(13 - u) (13 + u) = 89
To solve for unknown quantity u, substitute these in the product equation rs = 89
169 - u^2 = 89
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 89-169 = -80
Simplify the expression by subtracting 169 on both sides
u^2 = 80 u = \pm\sqrt{80} = \pm \sqrt{80}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =13 - \sqrt{80} = 4.056 s = 13 + \sqrt{80} = 21.944
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}