Solve for b
b=\frac{11}{13}\approx 0.846153846
b = \frac{21}{13} = 1\frac{8}{13} \approx 1.615384615
Share
Copied to clipboard
b^{2}-\frac{32}{13}b+\frac{231}{169}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-\left(-\frac{32}{13}\right)±\sqrt{\left(-\frac{32}{13}\right)^{2}-4\times \frac{231}{169}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{32}{13} for b, and \frac{231}{169} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-\frac{32}{13}\right)±\sqrt{\frac{1024}{169}-4\times \frac{231}{169}}}{2}
Square -\frac{32}{13} by squaring both the numerator and the denominator of the fraction.
b=\frac{-\left(-\frac{32}{13}\right)±\sqrt{\frac{1024-924}{169}}}{2}
Multiply -4 times \frac{231}{169}.
b=\frac{-\left(-\frac{32}{13}\right)±\sqrt{\frac{100}{169}}}{2}
Add \frac{1024}{169} to -\frac{924}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
b=\frac{-\left(-\frac{32}{13}\right)±\frac{10}{13}}{2}
Take the square root of \frac{100}{169}.
b=\frac{\frac{32}{13}±\frac{10}{13}}{2}
The opposite of -\frac{32}{13} is \frac{32}{13}.
b=\frac{\frac{42}{13}}{2}
Now solve the equation b=\frac{\frac{32}{13}±\frac{10}{13}}{2} when ± is plus. Add \frac{32}{13} to \frac{10}{13} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
b=\frac{21}{13}
Divide \frac{42}{13} by 2.
b=\frac{\frac{22}{13}}{2}
Now solve the equation b=\frac{\frac{32}{13}±\frac{10}{13}}{2} when ± is minus. Subtract \frac{10}{13} from \frac{32}{13} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
b=\frac{11}{13}
Divide \frac{22}{13} by 2.
b=\frac{21}{13} b=\frac{11}{13}
The equation is now solved.
b^{2}-\frac{32}{13}b+\frac{231}{169}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
b^{2}-\frac{32}{13}b+\frac{231}{169}-\frac{231}{169}=-\frac{231}{169}
Subtract \frac{231}{169} from both sides of the equation.
b^{2}-\frac{32}{13}b=-\frac{231}{169}
Subtracting \frac{231}{169} from itself leaves 0.
b^{2}-\frac{32}{13}b+\left(-\frac{16}{13}\right)^{2}=-\frac{231}{169}+\left(-\frac{16}{13}\right)^{2}
Divide -\frac{32}{13}, the coefficient of the x term, by 2 to get -\frac{16}{13}. Then add the square of -\frac{16}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}-\frac{32}{13}b+\frac{256}{169}=\frac{-231+256}{169}
Square -\frac{16}{13} by squaring both the numerator and the denominator of the fraction.
b^{2}-\frac{32}{13}b+\frac{256}{169}=\frac{25}{169}
Add -\frac{231}{169} to \frac{256}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(b-\frac{16}{13}\right)^{2}=\frac{25}{169}
Factor b^{2}-\frac{32}{13}b+\frac{256}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-\frac{16}{13}\right)^{2}}=\sqrt{\frac{25}{169}}
Take the square root of both sides of the equation.
b-\frac{16}{13}=\frac{5}{13} b-\frac{16}{13}=-\frac{5}{13}
Simplify.
b=\frac{21}{13} b=\frac{11}{13}
Add \frac{16}{13} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}