Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{5bx}{x^{2}+4}\text{, }&x\neq -2i\text{ and }x\neq 2i\\a\in \mathrm{C}\text{, }&\left(x=2i\text{ or }x=-2i\right)\text{ and }b=0\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=\frac{a\left(x^{2}+4\right)}{5x}\text{, }&x\neq 0\\b\in \mathrm{C}\text{, }&a=0\text{ and }x=0\end{matrix}\right.
Solve for a
a=\frac{5bx}{x^{2}+4}
Solve for b
\left\{\begin{matrix}b=\frac{a\left(x^{2}+4\right)}{5x}\text{, }&x\neq 0\\b\in \mathrm{R}\text{, }&a=0\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
ax^{2}+4a=5bx
Add 5bx to both sides. Anything plus zero gives itself.
\left(x^{2}+4\right)a=5bx
Combine all terms containing a.
\frac{\left(x^{2}+4\right)a}{x^{2}+4}=\frac{5bx}{x^{2}+4}
Divide both sides by x^{2}+4.
a=\frac{5bx}{x^{2}+4}
Dividing by x^{2}+4 undoes the multiplication by x^{2}+4.
-5bx+4a=-ax^{2}
Subtract ax^{2} from both sides. Anything subtracted from zero gives its negation.
-5bx=-ax^{2}-4a
Subtract 4a from both sides.
\left(-5x\right)b=-ax^{2}-4a
The equation is in standard form.
\frac{\left(-5x\right)b}{-5x}=\frac{a\left(2i-x\right)\left(x+2i\right)}{-5x}
Divide both sides by -5x.
b=\frac{a\left(2i-x\right)\left(x+2i\right)}{-5x}
Dividing by -5x undoes the multiplication by -5x.
b=\frac{ax}{5}+\frac{4a}{5x}
Divide a\left(x+2i\right)\left(-x+2i\right) by -5x.
ax^{2}+4a=5bx
Add 5bx to both sides. Anything plus zero gives itself.
\left(x^{2}+4\right)a=5bx
Combine all terms containing a.
\frac{\left(x^{2}+4\right)a}{x^{2}+4}=\frac{5bx}{x^{2}+4}
Divide both sides by x^{2}+4.
a=\frac{5bx}{x^{2}+4}
Dividing by x^{2}+4 undoes the multiplication by x^{2}+4.
-5bx+4a=-ax^{2}
Subtract ax^{2} from both sides. Anything subtracted from zero gives its negation.
-5bx=-ax^{2}-4a
Subtract 4a from both sides.
\left(-5x\right)b=-ax^{2}-4a
The equation is in standard form.
\frac{\left(-5x\right)b}{-5x}=-\frac{a\left(x^{2}+4\right)}{-5x}
Divide both sides by -5x.
b=-\frac{a\left(x^{2}+4\right)}{-5x}
Dividing by -5x undoes the multiplication by -5x.
b=\frac{ax}{5}+\frac{4a}{5x}
Divide -a\left(x^{2}+4\right) by -5x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}