Solve for a
a=\frac{2}{x+2}
x\neq -2
Solve for x
x=-2+\frac{2}{a}
a\neq 0
Graph
Share
Copied to clipboard
ax+2a+2=4
Use the distributive property to multiply a+1 by 2.
ax+2a=4-2
Subtract 2 from both sides.
ax+2a=2
Subtract 2 from 4 to get 2.
\left(x+2\right)a=2
Combine all terms containing a.
\frac{\left(x+2\right)a}{x+2}=\frac{2}{x+2}
Divide both sides by x+2.
a=\frac{2}{x+2}
Dividing by x+2 undoes the multiplication by x+2.
ax+2a+2=4
Use the distributive property to multiply a+1 by 2.
ax+2=4-2a
Subtract 2a from both sides.
ax=4-2a-2
Subtract 2 from both sides.
ax=2-2a
Subtract 2 from 4 to get 2.
\frac{ax}{a}=\frac{2-2a}{a}
Divide both sides by a.
x=\frac{2-2a}{a}
Dividing by a undoes the multiplication by a.
x=-2+\frac{2}{a}
Divide 2-2a by a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}