Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{\left(\frac{Y-1}{Y+1}\right)^{2}}{q}\text{, }&Y\neq -1\text{ and }q\neq 0\\a\in \mathrm{C}\text{, }&q=0\text{ and }Y=1\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{\left(\frac{Y-1}{Y+1}\right)^{2}}{q}\text{, }&Y\neq -1\text{ and }q\neq 0\\a\in \mathrm{R}\text{, }&q=0\text{ and }Y=1\end{matrix}\right.
Solve for Y (complex solution)
\left\{\begin{matrix}\\Y=\frac{-\sqrt{a}\sqrt{q}+1}{\sqrt{a}\sqrt{q}+1}\text{, }&\text{unconditionally}\\Y=-\frac{\sqrt{a}\sqrt{q}+1}{\sqrt{a}\sqrt{q}-1}\text{, }&q=0\text{ or }a\neq \frac{1}{q}\end{matrix}\right.
Solve for Y
\left\{\begin{matrix}Y=-\frac{\sqrt{aq}+1}{\sqrt{aq}-1}\text{, }&a\geq 0\text{ and }\left(q=0\text{ or }a\neq \frac{1}{q}\right)\text{ and }q\geq 0\\Y=\frac{-\sqrt{aq}+1}{\sqrt{aq}+1}\text{, }&\left(q\geq 0\text{ and }a\geq 0\right)\text{ or }\left(a\leq 0\text{ and }q\leq 0\right)\\Y=-\frac{\left(\sqrt{aq}+1\right)^{2}}{aq-1}\text{, }&a\leq 0\text{ and }\left(q=0\text{ or }a\neq \frac{1}{q}\right)\text{ and }q\leq 0\end{matrix}\right.
Share
Copied to clipboard
aq=\frac{\left(1-Y\right)^{2}}{\left(1+Y\right)^{2}}
To raise \frac{1-Y}{1+Y} to a power, raise both numerator and denominator to the power and then divide.
aq=\frac{1-2Y+Y^{2}}{\left(1+Y\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-Y\right)^{2}.
aq=\frac{1-2Y+Y^{2}}{1+2Y+Y^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+Y\right)^{2}.
aq\left(Y+1\right)^{2}=1-2Y+Y^{2}
Multiply both sides of the equation by \left(Y+1\right)^{2}.
aq\left(Y^{2}+2Y+1\right)=1-2Y+Y^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(Y+1\right)^{2}.
aqY^{2}+2aqY+aq=1-2Y+Y^{2}
Use the distributive property to multiply aq by Y^{2}+2Y+1.
\left(qY^{2}+2qY+q\right)a=1-2Y+Y^{2}
Combine all terms containing a.
\left(qY^{2}+2Yq+q\right)a=Y^{2}-2Y+1
The equation is in standard form.
\frac{\left(qY^{2}+2Yq+q\right)a}{qY^{2}+2Yq+q}=\frac{\left(Y-1\right)^{2}}{qY^{2}+2Yq+q}
Divide both sides by qY^{2}+2Yq+q.
a=\frac{\left(Y-1\right)^{2}}{qY^{2}+2Yq+q}
Dividing by qY^{2}+2Yq+q undoes the multiplication by qY^{2}+2Yq+q.
a=\frac{\left(Y-1\right)^{2}}{q\left(Y+1\right)^{2}}
Divide \left(Y-1\right)^{2} by qY^{2}+2Yq+q.
aq=\frac{\left(1-Y\right)^{2}}{\left(1+Y\right)^{2}}
To raise \frac{1-Y}{1+Y} to a power, raise both numerator and denominator to the power and then divide.
aq=\frac{1-2Y+Y^{2}}{\left(1+Y\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-Y\right)^{2}.
aq=\frac{1-2Y+Y^{2}}{1+2Y+Y^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+Y\right)^{2}.
aq\left(Y+1\right)^{2}=1-2Y+Y^{2}
Multiply both sides of the equation by \left(Y+1\right)^{2}.
aq\left(Y^{2}+2Y+1\right)=1-2Y+Y^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(Y+1\right)^{2}.
aqY^{2}+2aqY+aq=1-2Y+Y^{2}
Use the distributive property to multiply aq by Y^{2}+2Y+1.
\left(qY^{2}+2qY+q\right)a=1-2Y+Y^{2}
Combine all terms containing a.
\left(qY^{2}+2Yq+q\right)a=Y^{2}-2Y+1
The equation is in standard form.
\frac{\left(qY^{2}+2Yq+q\right)a}{qY^{2}+2Yq+q}=\frac{\left(Y-1\right)^{2}}{qY^{2}+2Yq+q}
Divide both sides by qY^{2}+2Yq+q.
a=\frac{\left(Y-1\right)^{2}}{qY^{2}+2Yq+q}
Dividing by qY^{2}+2Yq+q undoes the multiplication by qY^{2}+2Yq+q.
a=\frac{\left(Y-1\right)^{2}}{q\left(Y+1\right)^{2}}
Divide \left(Y-1\right)^{2} by qY^{2}+2Yq+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}