Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for Y (complex solution)
Tick mark Image
Solve for Y
Tick mark Image

Similar Problems from Web Search

Share

aq=\frac{\left(1-Y\right)^{2}}{\left(1+Y\right)^{2}}
To raise \frac{1-Y}{1+Y} to a power, raise both numerator and denominator to the power and then divide.
aq=\frac{1-2Y+Y^{2}}{\left(1+Y\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-Y\right)^{2}.
aq=\frac{1-2Y+Y^{2}}{1+2Y+Y^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+Y\right)^{2}.
aq\left(Y+1\right)^{2}=1-2Y+Y^{2}
Multiply both sides of the equation by \left(Y+1\right)^{2}.
aq\left(Y^{2}+2Y+1\right)=1-2Y+Y^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(Y+1\right)^{2}.
aqY^{2}+2aqY+aq=1-2Y+Y^{2}
Use the distributive property to multiply aq by Y^{2}+2Y+1.
\left(qY^{2}+2qY+q\right)a=1-2Y+Y^{2}
Combine all terms containing a.
\left(qY^{2}+2Yq+q\right)a=Y^{2}-2Y+1
The equation is in standard form.
\frac{\left(qY^{2}+2Yq+q\right)a}{qY^{2}+2Yq+q}=\frac{\left(Y-1\right)^{2}}{qY^{2}+2Yq+q}
Divide both sides by qY^{2}+2Yq+q.
a=\frac{\left(Y-1\right)^{2}}{qY^{2}+2Yq+q}
Dividing by qY^{2}+2Yq+q undoes the multiplication by qY^{2}+2Yq+q.
a=\frac{\left(Y-1\right)^{2}}{q\left(Y+1\right)^{2}}
Divide \left(Y-1\right)^{2} by qY^{2}+2Yq+q.
aq=\frac{\left(1-Y\right)^{2}}{\left(1+Y\right)^{2}}
To raise \frac{1-Y}{1+Y} to a power, raise both numerator and denominator to the power and then divide.
aq=\frac{1-2Y+Y^{2}}{\left(1+Y\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-Y\right)^{2}.
aq=\frac{1-2Y+Y^{2}}{1+2Y+Y^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+Y\right)^{2}.
aq\left(Y+1\right)^{2}=1-2Y+Y^{2}
Multiply both sides of the equation by \left(Y+1\right)^{2}.
aq\left(Y^{2}+2Y+1\right)=1-2Y+Y^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(Y+1\right)^{2}.
aqY^{2}+2aqY+aq=1-2Y+Y^{2}
Use the distributive property to multiply aq by Y^{2}+2Y+1.
\left(qY^{2}+2qY+q\right)a=1-2Y+Y^{2}
Combine all terms containing a.
\left(qY^{2}+2Yq+q\right)a=Y^{2}-2Y+1
The equation is in standard form.
\frac{\left(qY^{2}+2Yq+q\right)a}{qY^{2}+2Yq+q}=\frac{\left(Y-1\right)^{2}}{qY^{2}+2Yq+q}
Divide both sides by qY^{2}+2Yq+q.
a=\frac{\left(Y-1\right)^{2}}{qY^{2}+2Yq+q}
Dividing by qY^{2}+2Yq+q undoes the multiplication by qY^{2}+2Yq+q.
a=\frac{\left(Y-1\right)^{2}}{q\left(Y+1\right)^{2}}
Divide \left(Y-1\right)^{2} by qY^{2}+2Yq+q.