Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for b
Tick mark Image
Graph

Similar Problems from Web Search

Share

abx^{2}+b^{2}x-acx-bc=0
Use the distributive property to multiply b^{2}-ac by x.
abx^{2}-acx-bc=-b^{2}x
Subtract b^{2}x from both sides. Anything subtracted from zero gives its negation.
abx^{2}-acx=-b^{2}x+bc
Add bc to both sides.
abx^{2}-acx=-xb^{2}+bc
Reorder the terms.
\left(bx^{2}-cx\right)a=-xb^{2}+bc
Combine all terms containing a.
\left(bx^{2}-cx\right)a=bc-xb^{2}
The equation is in standard form.
\frac{\left(bx^{2}-cx\right)a}{bx^{2}-cx}=\frac{b\left(c-bx\right)}{bx^{2}-cx}
Divide both sides by bx^{2}-cx.
a=\frac{b\left(c-bx\right)}{bx^{2}-cx}
Dividing by bx^{2}-cx undoes the multiplication by bx^{2}-cx.
a=-\frac{b}{x}
Divide b\left(-xb+c\right) by bx^{2}-cx.
abx^{2}+b^{2}x-acx-bc=0
Use the distributive property to multiply b^{2}-ac by x.
abx^{2}-acx-bc=-b^{2}x
Subtract b^{2}x from both sides. Anything subtracted from zero gives its negation.
abx^{2}-acx=-b^{2}x+bc
Add bc to both sides.
abx^{2}-acx=-xb^{2}+bc
Reorder the terms.
\left(bx^{2}-cx\right)a=-xb^{2}+bc
Combine all terms containing a.
\left(bx^{2}-cx\right)a=bc-xb^{2}
The equation is in standard form.
\frac{\left(bx^{2}-cx\right)a}{bx^{2}-cx}=\frac{b\left(c-bx\right)}{bx^{2}-cx}
Divide both sides by bx^{2}-cx.
a=\frac{b\left(c-bx\right)}{bx^{2}-cx}
Dividing by bx^{2}-cx undoes the multiplication by bx^{2}-cx.
a=-\frac{b}{x}
Divide b\left(-xb+c\right) by bx^{2}-cx.