Solve for n
n=-\frac{2\left(2a_{n}+1\right)}{3a_{n}-4}
a_{n}\neq \frac{4}{3}
Solve for a_n
a_{n}=-\frac{2\left(1-2n\right)}{3n+4}
n\neq -\frac{4}{3}
Share
Copied to clipboard
a_{n}\left(3n+4\right)=4n-2
Variable n cannot be equal to -\frac{4}{3} since division by zero is not defined. Multiply both sides of the equation by 3n+4.
3a_{n}n+4a_{n}=4n-2
Use the distributive property to multiply a_{n} by 3n+4.
3a_{n}n+4a_{n}-4n=-2
Subtract 4n from both sides.
3a_{n}n-4n=-2-4a_{n}
Subtract 4a_{n} from both sides.
\left(3a_{n}-4\right)n=-2-4a_{n}
Combine all terms containing n.
\left(3a_{n}-4\right)n=-4a_{n}-2
The equation is in standard form.
\frac{\left(3a_{n}-4\right)n}{3a_{n}-4}=\frac{-4a_{n}-2}{3a_{n}-4}
Divide both sides by 3a_{n}-4.
n=\frac{-4a_{n}-2}{3a_{n}-4}
Dividing by 3a_{n}-4 undoes the multiplication by 3a_{n}-4.
n=-\frac{2\left(2a_{n}+1\right)}{3a_{n}-4}
Divide -2-4a_{n} by 3a_{n}-4.
n=-\frac{2\left(2a_{n}+1\right)}{3a_{n}-4}\text{, }n\neq -\frac{4}{3}
Variable n cannot be equal to -\frac{4}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}