Solve for a_n
a_{n}=\frac{n}{2}+\frac{7}{8}
Solve for n
n=2a_{n}-\frac{7}{4}
Share
Copied to clipboard
a_{n}=\frac{11}{8}+\frac{1}{2}n-\frac{1}{2}
Use the distributive property to multiply \frac{1}{2} by n-1.
a_{n}=\frac{7}{8}+\frac{1}{2}n
Subtract \frac{1}{2} from \frac{11}{8} to get \frac{7}{8}.
a_{n}=\frac{11}{8}+\frac{1}{2}n-\frac{1}{2}
Use the distributive property to multiply \frac{1}{2} by n-1.
a_{n}=\frac{7}{8}+\frac{1}{2}n
Subtract \frac{1}{2} from \frac{11}{8} to get \frac{7}{8}.
\frac{7}{8}+\frac{1}{2}n=a_{n}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}n=a_{n}-\frac{7}{8}
Subtract \frac{7}{8} from both sides.
\frac{\frac{1}{2}n}{\frac{1}{2}}=\frac{a_{n}-\frac{7}{8}}{\frac{1}{2}}
Multiply both sides by 2.
n=\frac{a_{n}-\frac{7}{8}}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
n=2a_{n}-\frac{7}{4}
Divide a_{n}-\frac{7}{8} by \frac{1}{2} by multiplying a_{n}-\frac{7}{8} by the reciprocal of \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}