Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{4a_{3}}{\left(2y-3\right)x_{2}^{2}}\text{, }&y\neq \frac{3}{2}\text{ and }x_{2}\neq 0\\x\in \mathrm{C}\text{, }&\left(x_{2}=0\text{ or }y=\frac{3}{2}\right)\text{ and }a_{3}=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{4a_{3}}{\left(2y-3\right)x_{2}^{2}}\text{, }&y\neq \frac{3}{2}\text{ and }x_{2}\neq 0\\x\in \mathrm{R}\text{, }&\left(x_{2}=0\text{ or }y=\frac{3}{2}\right)\text{ and }a_{3}=0\end{matrix}\right.
Solve for a_3
a_{3}=\frac{x\left(2y-3\right)x_{2}^{2}}{4}
Graph
Share
Copied to clipboard
a_{3}=\frac{1}{2}x_{2}^{2}xy-\frac{3}{4}x_{2}^{2}x
Use the distributive property to multiply \frac{1}{2}x_{2}^{2}x by y-\frac{3}{2}.
\frac{1}{2}x_{2}^{2}xy-\frac{3}{4}x_{2}^{2}x=a_{3}
Swap sides so that all variable terms are on the left hand side.
\left(\frac{1}{2}x_{2}^{2}y-\frac{3}{4}x_{2}^{2}\right)x=a_{3}
Combine all terms containing x.
\left(\frac{yx_{2}^{2}}{2}-\frac{3x_{2}^{2}}{4}\right)x=a_{3}
The equation is in standard form.
\frac{\left(\frac{yx_{2}^{2}}{2}-\frac{3x_{2}^{2}}{4}\right)x}{\frac{yx_{2}^{2}}{2}-\frac{3x_{2}^{2}}{4}}=\frac{a_{3}}{\frac{yx_{2}^{2}}{2}-\frac{3x_{2}^{2}}{4}}
Divide both sides by \frac{1}{2}x_{2}^{2}y-\frac{3}{4}x_{2}^{2}.
x=\frac{a_{3}}{\frac{yx_{2}^{2}}{2}-\frac{3x_{2}^{2}}{4}}
Dividing by \frac{1}{2}x_{2}^{2}y-\frac{3}{4}x_{2}^{2} undoes the multiplication by \frac{1}{2}x_{2}^{2}y-\frac{3}{4}x_{2}^{2}.
x=\frac{4a_{3}}{\left(2y-3\right)x_{2}^{2}}
Divide a_{3} by \frac{1}{2}x_{2}^{2}y-\frac{3}{4}x_{2}^{2}.
a_{3}=\frac{1}{2}x_{2}^{2}xy-\frac{3}{4}x_{2}^{2}x
Use the distributive property to multiply \frac{1}{2}x_{2}^{2}x by y-\frac{3}{2}.
\frac{1}{2}x_{2}^{2}xy-\frac{3}{4}x_{2}^{2}x=a_{3}
Swap sides so that all variable terms are on the left hand side.
\left(\frac{1}{2}x_{2}^{2}y-\frac{3}{4}x_{2}^{2}\right)x=a_{3}
Combine all terms containing x.
\left(\frac{yx_{2}^{2}}{2}-\frac{3x_{2}^{2}}{4}\right)x=a_{3}
The equation is in standard form.
\frac{\left(\frac{yx_{2}^{2}}{2}-\frac{3x_{2}^{2}}{4}\right)x}{\frac{yx_{2}^{2}}{2}-\frac{3x_{2}^{2}}{4}}=\frac{a_{3}}{\frac{yx_{2}^{2}}{2}-\frac{3x_{2}^{2}}{4}}
Divide both sides by \frac{1}{2}x_{2}^{2}y-\frac{3}{4}x_{2}^{2}.
x=\frac{a_{3}}{\frac{yx_{2}^{2}}{2}-\frac{3x_{2}^{2}}{4}}
Dividing by \frac{1}{2}x_{2}^{2}y-\frac{3}{4}x_{2}^{2} undoes the multiplication by \frac{1}{2}x_{2}^{2}y-\frac{3}{4}x_{2}^{2}.
x=\frac{4a_{3}}{\left(2y-3\right)x_{2}^{2}}
Divide a_{3} by \frac{1}{2}x_{2}^{2}y-\frac{3}{4}x_{2}^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}