Solve for a
a=\frac{5\left(b-8\right)}{3}
Solve for b
b=\frac{3a}{5}+8
Share
Copied to clipboard
a-20=\frac{5}{3}b-\frac{100}{3}
Use the distributive property to multiply \frac{5}{3} by b-20.
a=\frac{5}{3}b-\frac{100}{3}+20
Add 20 to both sides.
a=\frac{5}{3}b-\frac{40}{3}
Add -\frac{100}{3} and 20 to get -\frac{40}{3}.
a-20=\frac{5}{3}b-\frac{100}{3}
Use the distributive property to multiply \frac{5}{3} by b-20.
\frac{5}{3}b-\frac{100}{3}=a-20
Swap sides so that all variable terms are on the left hand side.
\frac{5}{3}b=a-20+\frac{100}{3}
Add \frac{100}{3} to both sides.
\frac{5}{3}b=a+\frac{40}{3}
Add -20 and \frac{100}{3} to get \frac{40}{3}.
\frac{\frac{5}{3}b}{\frac{5}{3}}=\frac{a+\frac{40}{3}}{\frac{5}{3}}
Divide both sides of the equation by \frac{5}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
b=\frac{a+\frac{40}{3}}{\frac{5}{3}}
Dividing by \frac{5}{3} undoes the multiplication by \frac{5}{3}.
b=\frac{3a}{5}+8
Divide a+\frac{40}{3} by \frac{5}{3} by multiplying a+\frac{40}{3} by the reciprocal of \frac{5}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}