Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{c}{\left(x-2\right)\left(x-1\right)}\text{, }&x\neq 1\text{ and }x\neq 2\\a\in \mathrm{C}\text{, }&\left(x=2\text{ or }x=1\right)\text{ and }c=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{c}{\left(x-2\right)\left(x-1\right)}\text{, }&x\neq 1\text{ and }x\neq 2\\a\in \mathrm{R}\text{, }&\left(x=2\text{ or }x=1\right)\text{ and }c=0\end{matrix}\right.
Solve for c
c=-a\left(x-2\right)\left(x-1\right)
Graph
Share
Copied to clipboard
a\left(x^{2}-2x+1\right)+c=ax-a
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
ax^{2}-2ax+a+c=ax-a
Use the distributive property to multiply a by x^{2}-2x+1.
ax^{2}-2ax+a+c-ax=-a
Subtract ax from both sides.
ax^{2}-3ax+a+c=-a
Combine -2ax and -ax to get -3ax.
ax^{2}-3ax+a+c+a=0
Add a to both sides.
ax^{2}-3ax+2a+c=0
Combine a and a to get 2a.
ax^{2}-3ax+2a=-c
Subtract c from both sides. Anything subtracted from zero gives its negation.
\left(x^{2}-3x+2\right)a=-c
Combine all terms containing a.
\frac{\left(x^{2}-3x+2\right)a}{x^{2}-3x+2}=-\frac{c}{x^{2}-3x+2}
Divide both sides by 2-3x+x^{2}.
a=-\frac{c}{x^{2}-3x+2}
Dividing by 2-3x+x^{2} undoes the multiplication by 2-3x+x^{2}.
a=-\frac{c}{\left(x-2\right)\left(x-1\right)}
Divide -c by 2-3x+x^{2}.
a\left(x^{2}-2x+1\right)+c=ax-a
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
ax^{2}-2ax+a+c=ax-a
Use the distributive property to multiply a by x^{2}-2x+1.
ax^{2}-2ax+a+c-ax=-a
Subtract ax from both sides.
ax^{2}-3ax+a+c=-a
Combine -2ax and -ax to get -3ax.
ax^{2}-3ax+a+c+a=0
Add a to both sides.
ax^{2}-3ax+2a+c=0
Combine a and a to get 2a.
ax^{2}-3ax+2a=-c
Subtract c from both sides. Anything subtracted from zero gives its negation.
\left(x^{2}-3x+2\right)a=-c
Combine all terms containing a.
\frac{\left(x^{2}-3x+2\right)a}{x^{2}-3x+2}=-\frac{c}{x^{2}-3x+2}
Divide both sides by 2-3x+x^{2}.
a=-\frac{c}{x^{2}-3x+2}
Dividing by 2-3x+x^{2} undoes the multiplication by 2-3x+x^{2}.
a=-\frac{c}{\left(x-2\right)\left(x-1\right)}
Divide -c by 2-3x+x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}