Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{bx^{2}-x^{2}+2bx+b+c}{\left(x-1\right)^{2}}\text{, }&x\neq 1\\a\in \mathrm{C}\text{, }&b=\frac{1-c}{4}\text{ and }x=1\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{ax^{2}-x^{2}-2ax+a+c}{\left(x+1\right)^{2}}\text{, }&x\neq -1\\b\in \mathrm{C}\text{, }&a=\frac{1-c}{4}\text{ and }x=-1\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{bx^{2}-x^{2}+2bx+b+c}{\left(x-1\right)^{2}}\text{, }&x\neq 1\\a\in \mathrm{R}\text{, }&b=\frac{1-c}{4}\text{ and }x=1\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{ax^{2}-x^{2}-2ax+a+c}{\left(x+1\right)^{2}}\text{, }&x\neq -1\\b\in \mathrm{R}\text{, }&a=\frac{1-c}{4}\text{ and }x=-1\end{matrix}\right.
Graph
Share
Copied to clipboard
a\left(x^{2}-2x+1\right)+b\left(x+1\right)^{2}+c=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
ax^{2}-2ax+a+b\left(x+1\right)^{2}+c=x^{2}
Use the distributive property to multiply a by x^{2}-2x+1.
ax^{2}-2ax+a+b\left(x^{2}+2x+1\right)+c=x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
ax^{2}-2ax+a+bx^{2}+2bx+b+c=x^{2}
Use the distributive property to multiply b by x^{2}+2x+1.
ax^{2}-2ax+a+2bx+b+c=x^{2}-bx^{2}
Subtract bx^{2} from both sides.
ax^{2}-2ax+a+b+c=x^{2}-bx^{2}-2bx
Subtract 2bx from both sides.
ax^{2}-2ax+a+c=x^{2}-bx^{2}-2bx-b
Subtract b from both sides.
ax^{2}-2ax+a=x^{2}-bx^{2}-2bx-b-c
Subtract c from both sides.
ax^{2}-2ax+a=-bx^{2}+x^{2}-2bx-b-c
Reorder the terms.
\left(x^{2}-2x+1\right)a=-bx^{2}+x^{2}-2bx-b-c
Combine all terms containing a.
\frac{\left(x^{2}-2x+1\right)a}{x^{2}-2x+1}=\frac{-bx^{2}+x^{2}-2bx-b-c}{x^{2}-2x+1}
Divide both sides by x^{2}-2x+1.
a=\frac{-bx^{2}+x^{2}-2bx-b-c}{x^{2}-2x+1}
Dividing by x^{2}-2x+1 undoes the multiplication by x^{2}-2x+1.
a=\frac{-bx^{2}+x^{2}-2bx-b-c}{\left(x-1\right)^{2}}
Divide -bx^{2}+x^{2}-2bx-b-c by x^{2}-2x+1.
a\left(x^{2}-2x+1\right)+b\left(x+1\right)^{2}+c=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
ax^{2}-2ax+a+b\left(x+1\right)^{2}+c=x^{2}
Use the distributive property to multiply a by x^{2}-2x+1.
ax^{2}-2ax+a+b\left(x^{2}+2x+1\right)+c=x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
ax^{2}-2ax+a+bx^{2}+2bx+b+c=x^{2}
Use the distributive property to multiply b by x^{2}+2x+1.
-2ax+a+bx^{2}+2bx+b+c=x^{2}-ax^{2}
Subtract ax^{2} from both sides.
a+bx^{2}+2bx+b+c=x^{2}-ax^{2}+2ax
Add 2ax to both sides.
bx^{2}+2bx+b+c=x^{2}-ax^{2}+2ax-a
Subtract a from both sides.
bx^{2}+2bx+b=x^{2}-ax^{2}+2ax-a-c
Subtract c from both sides.
bx^{2}+2bx+b=-ax^{2}+x^{2}+2ax-a-c
Reorder the terms.
\left(x^{2}+2x+1\right)b=-ax^{2}+x^{2}+2ax-a-c
Combine all terms containing b.
\frac{\left(x^{2}+2x+1\right)b}{x^{2}+2x+1}=\frac{-ax^{2}+x^{2}+2ax-a-c}{x^{2}+2x+1}
Divide both sides by x^{2}+2x+1.
b=\frac{-ax^{2}+x^{2}+2ax-a-c}{x^{2}+2x+1}
Dividing by x^{2}+2x+1 undoes the multiplication by x^{2}+2x+1.
b=\frac{-ax^{2}+x^{2}+2ax-a-c}{\left(x+1\right)^{2}}
Divide -ax^{2}+x^{2}+2ax-a-c by x^{2}+2x+1.
a\left(x^{2}-2x+1\right)+b\left(x+1\right)^{2}+c=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
ax^{2}-2ax+a+b\left(x+1\right)^{2}+c=x^{2}
Use the distributive property to multiply a by x^{2}-2x+1.
ax^{2}-2ax+a+b\left(x^{2}+2x+1\right)+c=x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
ax^{2}-2ax+a+bx^{2}+2bx+b+c=x^{2}
Use the distributive property to multiply b by x^{2}+2x+1.
ax^{2}-2ax+a+2bx+b+c=x^{2}-bx^{2}
Subtract bx^{2} from both sides.
ax^{2}-2ax+a+b+c=x^{2}-bx^{2}-2bx
Subtract 2bx from both sides.
ax^{2}-2ax+a+c=x^{2}-bx^{2}-2bx-b
Subtract b from both sides.
ax^{2}-2ax+a=x^{2}-bx^{2}-2bx-b-c
Subtract c from both sides.
ax^{2}-2ax+a=-bx^{2}+x^{2}-2bx-b-c
Reorder the terms.
\left(x^{2}-2x+1\right)a=-bx^{2}+x^{2}-2bx-b-c
Combine all terms containing a.
\frac{\left(x^{2}-2x+1\right)a}{x^{2}-2x+1}=\frac{-bx^{2}+x^{2}-2bx-b-c}{x^{2}-2x+1}
Divide both sides by x^{2}-2x+1.
a=\frac{-bx^{2}+x^{2}-2bx-b-c}{x^{2}-2x+1}
Dividing by x^{2}-2x+1 undoes the multiplication by x^{2}-2x+1.
a=\frac{-bx^{2}+x^{2}-2bx-b-c}{\left(x-1\right)^{2}}
Divide -bx^{2}+x^{2}-2bx-b-c by x^{2}-2x+1.
a\left(x^{2}-2x+1\right)+b\left(x+1\right)^{2}+c=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
ax^{2}-2ax+a+b\left(x+1\right)^{2}+c=x^{2}
Use the distributive property to multiply a by x^{2}-2x+1.
ax^{2}-2ax+a+b\left(x^{2}+2x+1\right)+c=x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
ax^{2}-2ax+a+bx^{2}+2bx+b+c=x^{2}
Use the distributive property to multiply b by x^{2}+2x+1.
-2ax+a+bx^{2}+2bx+b+c=x^{2}-ax^{2}
Subtract ax^{2} from both sides.
a+bx^{2}+2bx+b+c=x^{2}-ax^{2}+2ax
Add 2ax to both sides.
bx^{2}+2bx+b+c=x^{2}-ax^{2}+2ax-a
Subtract a from both sides.
bx^{2}+2bx+b=x^{2}-ax^{2}+2ax-a-c
Subtract c from both sides.
bx^{2}+2bx+b=-ax^{2}+x^{2}+2ax-a-c
Reorder the terms.
\left(x^{2}+2x+1\right)b=-ax^{2}+x^{2}+2ax-a-c
Combine all terms containing b.
\frac{\left(x^{2}+2x+1\right)b}{x^{2}+2x+1}=\frac{-ax^{2}+x^{2}+2ax-a-c}{x^{2}+2x+1}
Divide both sides by x^{2}+2x+1.
b=\frac{-ax^{2}+x^{2}+2ax-a-c}{x^{2}+2x+1}
Dividing by x^{2}+2x+1 undoes the multiplication by x^{2}+2x+1.
b=\frac{-ax^{2}+x^{2}+2ax-a-c}{\left(x+1\right)^{2}}
Divide -ax^{2}+x^{2}+2ax-a-c by x^{2}+2x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}