Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image
Graph

Similar Problems from Web Search

Share

a\left(x^{2}-2x+1\right)+b\left(x+1\right)^{2}+c=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
ax^{2}-2ax+a+b\left(x+1\right)^{2}+c=x^{2}
Use the distributive property to multiply a by x^{2}-2x+1.
ax^{2}-2ax+a+b\left(x^{2}+2x+1\right)+c=x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
ax^{2}-2ax+a+bx^{2}+2bx+b+c=x^{2}
Use the distributive property to multiply b by x^{2}+2x+1.
ax^{2}-2ax+a+2bx+b+c=x^{2}-bx^{2}
Subtract bx^{2} from both sides.
ax^{2}-2ax+a+b+c=x^{2}-bx^{2}-2bx
Subtract 2bx from both sides.
ax^{2}-2ax+a+c=x^{2}-bx^{2}-2bx-b
Subtract b from both sides.
ax^{2}-2ax+a=x^{2}-bx^{2}-2bx-b-c
Subtract c from both sides.
ax^{2}-2ax+a=-bx^{2}+x^{2}-2bx-b-c
Reorder the terms.
\left(x^{2}-2x+1\right)a=-bx^{2}+x^{2}-2bx-b-c
Combine all terms containing a.
\frac{\left(x^{2}-2x+1\right)a}{x^{2}-2x+1}=\frac{-bx^{2}+x^{2}-2bx-b-c}{x^{2}-2x+1}
Divide both sides by x^{2}-2x+1.
a=\frac{-bx^{2}+x^{2}-2bx-b-c}{x^{2}-2x+1}
Dividing by x^{2}-2x+1 undoes the multiplication by x^{2}-2x+1.
a=\frac{-bx^{2}+x^{2}-2bx-b-c}{\left(x-1\right)^{2}}
Divide -bx^{2}+x^{2}-2bx-b-c by x^{2}-2x+1.
a\left(x^{2}-2x+1\right)+b\left(x+1\right)^{2}+c=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
ax^{2}-2ax+a+b\left(x+1\right)^{2}+c=x^{2}
Use the distributive property to multiply a by x^{2}-2x+1.
ax^{2}-2ax+a+b\left(x^{2}+2x+1\right)+c=x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
ax^{2}-2ax+a+bx^{2}+2bx+b+c=x^{2}
Use the distributive property to multiply b by x^{2}+2x+1.
-2ax+a+bx^{2}+2bx+b+c=x^{2}-ax^{2}
Subtract ax^{2} from both sides.
a+bx^{2}+2bx+b+c=x^{2}-ax^{2}+2ax
Add 2ax to both sides.
bx^{2}+2bx+b+c=x^{2}-ax^{2}+2ax-a
Subtract a from both sides.
bx^{2}+2bx+b=x^{2}-ax^{2}+2ax-a-c
Subtract c from both sides.
bx^{2}+2bx+b=-ax^{2}+x^{2}+2ax-a-c
Reorder the terms.
\left(x^{2}+2x+1\right)b=-ax^{2}+x^{2}+2ax-a-c
Combine all terms containing b.
\frac{\left(x^{2}+2x+1\right)b}{x^{2}+2x+1}=\frac{-ax^{2}+x^{2}+2ax-a-c}{x^{2}+2x+1}
Divide both sides by x^{2}+2x+1.
b=\frac{-ax^{2}+x^{2}+2ax-a-c}{x^{2}+2x+1}
Dividing by x^{2}+2x+1 undoes the multiplication by x^{2}+2x+1.
b=\frac{-ax^{2}+x^{2}+2ax-a-c}{\left(x+1\right)^{2}}
Divide -ax^{2}+x^{2}+2ax-a-c by x^{2}+2x+1.
a\left(x^{2}-2x+1\right)+b\left(x+1\right)^{2}+c=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
ax^{2}-2ax+a+b\left(x+1\right)^{2}+c=x^{2}
Use the distributive property to multiply a by x^{2}-2x+1.
ax^{2}-2ax+a+b\left(x^{2}+2x+1\right)+c=x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
ax^{2}-2ax+a+bx^{2}+2bx+b+c=x^{2}
Use the distributive property to multiply b by x^{2}+2x+1.
ax^{2}-2ax+a+2bx+b+c=x^{2}-bx^{2}
Subtract bx^{2} from both sides.
ax^{2}-2ax+a+b+c=x^{2}-bx^{2}-2bx
Subtract 2bx from both sides.
ax^{2}-2ax+a+c=x^{2}-bx^{2}-2bx-b
Subtract b from both sides.
ax^{2}-2ax+a=x^{2}-bx^{2}-2bx-b-c
Subtract c from both sides.
ax^{2}-2ax+a=-bx^{2}+x^{2}-2bx-b-c
Reorder the terms.
\left(x^{2}-2x+1\right)a=-bx^{2}+x^{2}-2bx-b-c
Combine all terms containing a.
\frac{\left(x^{2}-2x+1\right)a}{x^{2}-2x+1}=\frac{-bx^{2}+x^{2}-2bx-b-c}{x^{2}-2x+1}
Divide both sides by x^{2}-2x+1.
a=\frac{-bx^{2}+x^{2}-2bx-b-c}{x^{2}-2x+1}
Dividing by x^{2}-2x+1 undoes the multiplication by x^{2}-2x+1.
a=\frac{-bx^{2}+x^{2}-2bx-b-c}{\left(x-1\right)^{2}}
Divide -bx^{2}+x^{2}-2bx-b-c by x^{2}-2x+1.
a\left(x^{2}-2x+1\right)+b\left(x+1\right)^{2}+c=x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
ax^{2}-2ax+a+b\left(x+1\right)^{2}+c=x^{2}
Use the distributive property to multiply a by x^{2}-2x+1.
ax^{2}-2ax+a+b\left(x^{2}+2x+1\right)+c=x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
ax^{2}-2ax+a+bx^{2}+2bx+b+c=x^{2}
Use the distributive property to multiply b by x^{2}+2x+1.
-2ax+a+bx^{2}+2bx+b+c=x^{2}-ax^{2}
Subtract ax^{2} from both sides.
a+bx^{2}+2bx+b+c=x^{2}-ax^{2}+2ax
Add 2ax to both sides.
bx^{2}+2bx+b+c=x^{2}-ax^{2}+2ax-a
Subtract a from both sides.
bx^{2}+2bx+b=x^{2}-ax^{2}+2ax-a-c
Subtract c from both sides.
bx^{2}+2bx+b=-ax^{2}+x^{2}+2ax-a-c
Reorder the terms.
\left(x^{2}+2x+1\right)b=-ax^{2}+x^{2}+2ax-a-c
Combine all terms containing b.
\frac{\left(x^{2}+2x+1\right)b}{x^{2}+2x+1}=\frac{-ax^{2}+x^{2}+2ax-a-c}{x^{2}+2x+1}
Divide both sides by x^{2}+2x+1.
b=\frac{-ax^{2}+x^{2}+2ax-a-c}{x^{2}+2x+1}
Dividing by x^{2}+2x+1 undoes the multiplication by x^{2}+2x+1.
b=\frac{-ax^{2}+x^{2}+2ax-a-c}{\left(x+1\right)^{2}}
Divide -ax^{2}+x^{2}+2ax-a-c by x^{2}+2x+1.