Solve for b (complex solution)
\left\{\begin{matrix}\\b=ay+3\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&a=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}\\b=ay+3\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&a=0\end{matrix}\right.
Solve for a (complex solution)
\left\{\begin{matrix}\\a=0\text{, }&\text{unconditionally}\\a=\frac{b-3}{y}\text{, }&y\neq 0\\a\in \mathrm{C}\text{, }&b=3\text{ and }y=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=0\text{, }&\text{unconditionally}\\a=\frac{b-3}{y}\text{, }&y\neq 0\\a\in \mathrm{R}\text{, }&b=3\text{ and }y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
ab-4a-a\left(b-1\right)=a\left(ay-b\right)
Use the distributive property to multiply a by b-4.
ab-4a-\left(ab-a\right)=a\left(ay-b\right)
Use the distributive property to multiply a by b-1.
ab-4a-ab+a=a\left(ay-b\right)
To find the opposite of ab-a, find the opposite of each term.
-4a+a=a\left(ay-b\right)
Combine ab and -ab to get 0.
-3a=a\left(ay-b\right)
Combine -4a and a to get -3a.
-3a=ya^{2}-ab
Use the distributive property to multiply a by ay-b.
ya^{2}-ab=-3a
Swap sides so that all variable terms are on the left hand side.
-ab=-3a-ya^{2}
Subtract ya^{2} from both sides.
-ab=-ya^{2}-3a
Reorder the terms.
\left(-a\right)b=-ya^{2}-3a
The equation is in standard form.
\frac{\left(-a\right)b}{-a}=-\frac{a\left(ay+3\right)}{-a}
Divide both sides by -a.
b=-\frac{a\left(ay+3\right)}{-a}
Dividing by -a undoes the multiplication by -a.
b=ay+3
Divide -a\left(ya+3\right) by -a.
ab-4a-a\left(b-1\right)=a\left(ay-b\right)
Use the distributive property to multiply a by b-4.
ab-4a-\left(ab-a\right)=a\left(ay-b\right)
Use the distributive property to multiply a by b-1.
ab-4a-ab+a=a\left(ay-b\right)
To find the opposite of ab-a, find the opposite of each term.
-4a+a=a\left(ay-b\right)
Combine ab and -ab to get 0.
-3a=a\left(ay-b\right)
Combine -4a and a to get -3a.
-3a=ya^{2}-ab
Use the distributive property to multiply a by ay-b.
ya^{2}-ab=-3a
Swap sides so that all variable terms are on the left hand side.
-ab=-3a-ya^{2}
Subtract ya^{2} from both sides.
-ab=-ya^{2}-3a
Reorder the terms.
\left(-a\right)b=-ya^{2}-3a
The equation is in standard form.
\frac{\left(-a\right)b}{-a}=-\frac{a\left(ay+3\right)}{-a}
Divide both sides by -a.
b=-\frac{a\left(ay+3\right)}{-a}
Dividing by -a undoes the multiplication by -a.
b=ay+3
Divide -a\left(ya+3\right) by -a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}