a ( 1 + 8 \% ) ^ { x } = 2
Solve for a
a=2\times \left(\frac{25}{27}\right)^{x}
Solve for x (complex solution)
x=\frac{-\ln(a)+\ln(2)}{\ln(\frac{27}{25})}+\frac{2\pi n_{1}i}{\ln(\frac{27}{25})}
n_{1}\in \mathrm{Z}
a\neq 0
Solve for x
x=\frac{-\ln(a)+\ln(2)}{\ln(\frac{27}{25})}
a>0
Graph
Share
Copied to clipboard
a\left(1+\frac{2}{25}\right)^{x}=2
Reduce the fraction \frac{8}{100} to lowest terms by extracting and canceling out 4.
a\times \left(\frac{27}{25}\right)^{x}=2
Add 1 and \frac{2}{25} to get \frac{27}{25}.
\left(\frac{27}{25}\right)^{x}a=2
The equation is in standard form.
\frac{\left(\frac{27}{25}\right)^{x}a}{\left(\frac{27}{25}\right)^{x}}=\frac{2}{\left(\frac{27}{25}\right)^{x}}
Divide both sides by \left(\frac{27}{25}\right)^{x}.
a=\frac{2}{\left(\frac{27}{25}\right)^{x}}
Dividing by \left(\frac{27}{25}\right)^{x} undoes the multiplication by \left(\frac{27}{25}\right)^{x}.
a=2\times \left(\frac{25}{27}\right)^{x}
Divide 2 by \left(\frac{27}{25}\right)^{x}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}