Evaluate
0
Factor
0
Share
Copied to clipboard
a^{6}\left(-a^{2}\right)^{3}+a^{2}\left(a^{5}\right)^{2}
Calculate -a^{5} to the power of 2 and get \left(a^{5}\right)^{2}.
a^{6}\left(-a^{2}\right)^{3}+a^{2}a^{10}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
a^{6}\left(-a^{2}\right)^{3}+a^{12}
To multiply powers of the same base, add their exponents. Add 2 and 10 to get 12.
a^{6}\left(-1\right)^{3}\left(a^{2}\right)^{3}+a^{12}
Expand \left(-a^{2}\right)^{3}.
a^{6}\left(-1\right)^{3}a^{6}+a^{12}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
a^{6}\left(-1\right)a^{6}+a^{12}
Calculate -1 to the power of 3 and get -1.
a^{12}\left(-1\right)+a^{12}
To multiply powers of the same base, add their exponents. Add 6 and 6 to get 12.
0
Combine a^{12}\left(-1\right) and a^{12} to get 0.
a^{2}\left(-a^{10}+\left(-a^{5}\right)^{2}\right)
Factor out common term a^{2} by using distributive property.
0
Consider -a^{10}+\left(-a^{5}\right)^{2}. Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}