Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

a^{4}\left(a^{2}-b^{2}\right)-b^{4}\left(a^{2}-b^{2}\right)
Do the grouping a^{6}+b^{6}-a^{2}b^{4}-a^{4}b^{2}=\left(a^{6}-a^{4}b^{2}\right)+\left(-a^{2}b^{4}+b^{6}\right), and factor out a^{4} in the first and -b^{4} in the second group.
\left(a^{2}-b^{2}\right)\left(a^{4}-b^{4}\right)
Factor out common term a^{2}-b^{2} by using distributive property.
\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)
Consider a^{4}-b^{4}. Rewrite a^{4}-b^{4} as \left(a^{2}\right)^{2}-\left(b^{2}\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-b\right)\left(a+b\right)
Consider a^{2}-b^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a^{2}+b^{2}\right)\left(a-b\right)^{2}\left(a+b\right)^{2}
Rewrite the complete factored expression.