Factor
\left(a-b\right)^{2}\left(a+b\right)^{2}\left(a^{2}+b^{2}\right)
Evaluate
\left(a^{2}+b^{2}\right)\left(a^{2}-b^{2}\right)^{2}
Share
Copied to clipboard
a^{4}\left(a^{2}-b^{2}\right)-b^{4}\left(a^{2}-b^{2}\right)
Do the grouping a^{6}+b^{6}-a^{2}b^{4}-a^{4}b^{2}=\left(a^{6}-a^{4}b^{2}\right)+\left(-a^{2}b^{4}+b^{6}\right), and factor out a^{4} in the first and -b^{4} in the second group.
\left(a^{2}-b^{2}\right)\left(a^{4}-b^{4}\right)
Factor out common term a^{2}-b^{2} by using distributive property.
\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)
Consider a^{4}-b^{4}. Rewrite a^{4}-b^{4} as \left(a^{2}\right)^{2}-\left(b^{2}\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a-b\right)\left(a+b\right)
Consider a^{2}-b^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a^{2}+b^{2}\right)\left(a-b\right)^{2}\left(a+b\right)^{2}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}