Factor
\left(a^{2}+4\right)\left(a-2\right)^{3}
Evaluate
\left(a^{2}+4\right)\left(a-2\right)^{3}
Quiz
Polynomial
5 problems similar to:
a ^ { 5 } - 6 a ^ { 4 } + 16 a ^ { 3 } - 32 a ^ { 2 } + 48 a - 32
Share
Copied to clipboard
a^{5}-6a^{4}+16a^{3}-32a^{2}+48a-32=0
To factor the expression, solve the equation where it equals to 0.
±32,±16,±8,±4,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -32 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
a=2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
a^{4}-4a^{3}+8a^{2}-16a+16=0
By Factor theorem, a-k is a factor of the polynomial for each root k. Divide a^{5}-6a^{4}+16a^{3}-32a^{2}+48a-32 by a-2 to get a^{4}-4a^{3}+8a^{2}-16a+16. To factor the result, solve the equation where it equals to 0.
±16,±8,±4,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 16 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
a=2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
a^{3}-2a^{2}+4a-8=0
By Factor theorem, a-k is a factor of the polynomial for each root k. Divide a^{4}-4a^{3}+8a^{2}-16a+16 by a-2 to get a^{3}-2a^{2}+4a-8. To factor the result, solve the equation where it equals to 0.
±8,±4,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -8 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
a=2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
a^{2}+4=0
By Factor theorem, a-k is a factor of the polynomial for each root k. Divide a^{3}-2a^{2}+4a-8 by a-2 to get a^{2}+4. To factor the result, solve the equation where it equals to 0.
a=\frac{0±\sqrt{0^{2}-4\times 1\times 4}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 0 for b, and 4 for c in the quadratic formula.
a=\frac{0±\sqrt{-16}}{2}
Do the calculations.
a^{2}+4
Polynomial a^{2}+4 is not factored since it does not have any rational roots.
\left(a^{2}+4\right)\left(a-2\right)^{3}
Rewrite the factored expression using the obtained roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}