Factor
\left(a-2\right)\left(a+9\right)a^{3}
Evaluate
\left(a-2\right)\left(a+9\right)a^{3}
Share
Copied to clipboard
a^{3}\left(a^{2}+7a-18\right)
Factor out a^{3}.
p+q=7 pq=1\left(-18\right)=-18
Consider a^{2}+7a-18. Factor the expression by grouping. First, the expression needs to be rewritten as a^{2}+pa+qa-18. To find p and q, set up a system to be solved.
-1,18 -2,9 -3,6
Since pq is negative, p and q have the opposite signs. Since p+q is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -18.
-1+18=17 -2+9=7 -3+6=3
Calculate the sum for each pair.
p=-2 q=9
The solution is the pair that gives sum 7.
\left(a^{2}-2a\right)+\left(9a-18\right)
Rewrite a^{2}+7a-18 as \left(a^{2}-2a\right)+\left(9a-18\right).
a\left(a-2\right)+9\left(a-2\right)
Factor out a in the first and 9 in the second group.
\left(a-2\right)\left(a+9\right)
Factor out common term a-2 by using distributive property.
a^{3}\left(a-2\right)\left(a+9\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}