Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a^{4}-64a^{2}+900=0
Multiply 25 and 36 to get 900.
t^{2}-64t+900=0
Substitute t for a^{2}.
t=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\times 1\times 900}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -64 for b, and 900 for c in the quadratic formula.
t=\frac{64±4\sqrt{31}}{2}
Do the calculations.
t=2\sqrt{31}+32 t=32-2\sqrt{31}
Solve the equation t=\frac{64±4\sqrt{31}}{2} when ± is plus and when ± is minus.
a=-\left(\sqrt{31}+1\right) a=\sqrt{31}+1 a=1-\sqrt{31} a=-\left(1-\sqrt{31}\right)
Since a=t^{2}, the solutions are obtained by evaluating a=±\sqrt{t} for each t.
a^{4}-64a^{2}+900=0
Multiply 25 and 36 to get 900.
t^{2}-64t+900=0
Substitute t for a^{2}.
t=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\times 1\times 900}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -64 for b, and 900 for c in the quadratic formula.
t=\frac{64±4\sqrt{31}}{2}
Do the calculations.
t=2\sqrt{31}+32 t=32-2\sqrt{31}
Solve the equation t=\frac{64±4\sqrt{31}}{2} when ± is plus and when ± is minus.
a=\sqrt{31}+1 a=-\left(\sqrt{31}+1\right) a=-\left(1-\sqrt{31}\right) a=1-\sqrt{31}
Since a=t^{2}, the solutions are obtained by evaluating a=±\sqrt{t} for each t.